Characteristics and Unit Cell Fabrication of Molten Carbonate Fuel Cell

Seung Wook Eom, Gwi Yeol Kim

Abstract

We describe a manufacturing method and characteristics on components of molten carbonate fuel cell.

Cr, Al, Al₂O₃, Co, MgO powder were mixed with Ni powder for anode components and NiO was used for cathode electrode.

The electrolyte plate consisted of LiAlO₂ and carbonate (Li₂CO₃/K₂CO₃ = 62/38) and these three were manufactured by doctor-blade method.

As a result, open circuit voltage was 1.05[V] at Ni-10Cr anode and porosity was above 60[%].

Key Words: Fuel Cell, Unit Cell, Component, Performance

1. 서 론

연료전지 발전 기술은 천연 가스, methanol, 석탄과 같은 연료에서 얻어지는 수소와 공기속의 산소를 전기화학적으로 반응시켜 직접 전기를 생산하는 것이다. [1]~[7]

이 발전 시스템은 대기 오염이나 소음등의 공해가 적고 수요도 부기에서 실질할 수 있으므로 온전 설비를 줄일 수 있으며, 현장에서 설치공사가 쉬우며 용량의 증설이 용이하여 부하의 급격한 변화에도 적응할 수 있는 장점이 있다. [1]~[7]

연료전지에는 제 1 세대인 인산형 연료전지 (PAFC), 제 2 세대인 용융탄산염형 연료전지 (MCFC), 제 3 세대로 불리는 고체 전해질형 연료전지 (SOF)와 알칼리형 연료전지 (AFC) 등이 있다. [8]~[11]

한편 용융탄산염형 연료전지는 연료전지 발전의 일반적인 특징 외에 그 동작원리로부터 발전과 동시에 CO₂를 회수하는 시스템 구축이 가능하다. 이 때문에 현지설치형 전원, 화력발전 대체전원으로 이용하기 위한 신 발전 기술로서 그 실용화가 기대된다. [5]~[8]

이 MCFC는 미국, 일본, 유럽 각국에서 연구가 활발히 진행중이며, 현재 100kW급 전지본체 (stack)가 개발되었으며, 향후 1,000kW급 발전 시스템이 구성될 예정으로 있다. [11]

따라서, MCFC의 초기 실용화를 위해서는 우선 전지 본체의 개발이 선행되어야 하며, 이 전지 본체는 단위전지의 개발과 성능향상으로 대형화가 가능하다. [8]~[10]

세계적으로 많은 연구개발팀들은 실용화와 대형화에 적합한 단위전지를 개발하기 위해서 이 분야에 많은 노력을 기울이고 있다.

본 연구에서는 우수한 MCFC의 단위전지 개발 기술을 확립하기 위해서 전극, 전해질, 메트릭스등 각 구성요소들을 직접 제작하고 그 특성을 고찰, 분석하였다.

2. 재료

2.1. 양극

Ni 분말 (Inco. 255)을 결합제인 Polyvinyl butyral (10~20%), 가소체 Poly ethylene glycol (1~10%)와 약간의 첨가물로 혼합하고, 여기에 2차 금속분말의 조성비를 약간씩 날리며 첨가하여, Ethanol 용매 중에서 ball mill로 24시간 이상 혼합한 후, 기포제거 공정을 거쳐서, 두께 0.5~
2.2. 음극
NiO 전극을 음극으로 사용하였으며, 음극의 제조에는 다음과 같은 방법이 있다. 즉, Ni 전극을 산화 분위기에서 소결한 후 cell 내에서 lithiation 시키는 방법과 환원 분위기에서 소결한 후, cell 내에서 산화와 lithiation을 동시에 시키는 방법 및 소결된 NiO를 이용하여 전극을 제조하는 방법이 있는데, 본 연구에서는 현재 세계적으로 가장 널리 이용되고 있는 첫번째와 두번째의 방법을 택해서 실험을 행하였다.

2.3. 메트릭스
메트릭스 지체인 γ-LiAlO₂의 기공도를 조절하기 위하여, 서로 입자크기가 다른 것을 혼합하였다. 메트릭스를 제조하기 위해서, 우선 γ-LiAlO₂ (60-70 w/o)를 결합제인 Poly vinyl butyral (5~10 w/o), 소량의 해체제 및 기포제거제를 용매에 넣어 ball mill로 충분히 혼합한 후, 발생되는 기포를 제거하기 위해서 약 1시간 동안의 기포제거 과정을 거쳐 doctor blade로 두께 1.0mm 정도의 박막을 제조하였다.

2.4. 전해질
Li₂CO₃와 K₂CO₃을 62:38 용비로 섞어 전해질을 제조하였다. 이때 메트릭스로의 함착은 전지내에서 작동 중에 함착이 되는 in-situ 방법을 택하였다.

3. 특 성
3.1. 양극의 기공 분포
다양한 전극의 기공율을 알아보기 위해서, 수분 흡수율로 계기공 (open pore)가 완전히 물을 흡수하였을 때 전극의 중량에 대한 흡수량의 비율을 표시하는 방법으로 다음식에 의해서 계산하였다.

$$\text{기공율 (\%)} = \frac{W_3 - W_1}{W_3 - W_2} \times 100$$

단, W_1: 건조된 시간의 무게 (g)
W_2: 물을 흡수한 시간의 수중에서의 무게 (g)
W_3: 물을 흡수한 시간의 공기중에서의 무게 (g)
대부분의 전극이 50~80% 정도의 좋은 기공도를 갖는 것으로 나타났으며, 순수 Ni로만 제작한
A번 시험의 경우는 2차 금속 분말을 혼합 제조한
다른 전극에 비해 기공도가 나쁘게 나왔는데, 그림 1에 결과를 표시한다.

![그림 1. 전극들의 기공도](image)

Fig. 1. Porosity of various specimen

한편, 저세한 기공 분포와 평균 기공의 크기를 측정하기 위해서 Porosimeter와 전자주사현미경 을 이용하여 분석하였다.

그림 2에 보은 기공 분포는 Ni-5%Cr의 경우로써 평균 기공이 3.664[μm]로 거의 이상적이며, 10[μm] 정도의 큰 기공과, 0.1~0.01[μm]의 미세 기공이 적절히 분포되어, 전해질 함량과 반응 가스의 동로 가 될 수 있는 이중 기공 형태를 보여주고 있으며

![그림 2. Ni-5%Cr anode의 기공분포](image)

Fig. 2. Pore distribution of Ni-5%Cr anode

3.2. 양극의 변형

양극 변형은 실제 stack을 구멍을 때 발생되는 문제로 초점을 맞추어지고 있다. 4 atm은 접촉 저항을 줄이기 위한 최소의 압력이며, 500℃의 적응이 되었을 때 밴 밑에 있는 전극이 받는 압력은 stack 자체 무게만으로도 0.5 kg/cm² 정도의 압력 을 받게 된다고 한다. 11)

이에 따라 실제로 전극을 적층하였을 때 전극이 압력에 의해 눌리는 정도를 알아보기 위하여 변형 실험을 하였다. 13)

실험 조건은 전극 크기를 2cm × 2cm로 정한하
여, air cylinder로 4kg/cm²의 압력을 가해 주었다.
이에 운도 조건은 650℃이고, 분위기는 분화성 분위기인 N₂ 가스를 불어넣어 주었으며, 100시간에
마르게 실험을 하였다. 이후 강소된 두께를 시험전
시험의 두께에 대해 백분율로 나타내어 계산하였
다. 이 결과는 다음 그림 4에 나타난다.

사설의 전지 작동운도보다 가혹 조건인, 850℃
에서 실험을 하였고, H₂/N₂의 환원 및 분화성 분
위기로 75시간동안 열을 가하였다. 두께변화율을
원 시험의 두께에 대한 백분율로 계산하여 나타내
었다. 계산에 이용된 식은 다음과 같으며, 이의 결
과를 다음 그림 5에 나타내었다.

전극두께변화율 (%) =
 = 실험전 전극두께 - 실험후 전극두께
 = 실험전 전극두께

그림 5에서 보듯이, Ni 분말만을 재료로 사용한 전극보다는, 계 2 금속 분말을 혼합하여 제조한 전극의 두께 감소율이 대부분 적게 나타났는데,
그림 4. 변형 실험 후의 두께 감소

Fig. 4. Thickness loss after creep test

그림 5. 소결 실험 후의 두께 감소

Fig. 5. Thickness loss after sintering test

이후 혼합된 제2 금속 분만이 소결 효과에 따른 Ni 입자의 결정을 억제한 결과라고 보여지며, 특히 Cr, Al₂O₃, MgO 등을 추가하였을 때 그 효과가 좋았다.

3.4. 음극의 전도도

전기전도도 측정은 4 probe 방법을 사용하였는데, 그림 6처럼 원추형 시편을 제작한 후 Pt 선을 4곳에 연결하여 1, 4 부르에 Potentiostat/Galvanostat (EG & G, 273A)를 이용 정전류를 공급하고, 이때의 전압을 Multimeter로 측정하여 다음 식을 이용 계산하였다.

\[
R = \frac{V}{I} = \frac{1}{\sigma} \times \frac{S}{A}
\]

\[
\sigma = \frac{1}{V} \times \frac{S}{A}
\]

이때, 온도에 따른 전도도의 변화를 보기 위하여 시편을 전기로안에 넣고, 가열하여 측정을 하였다. 그림 7에 NiO 음극의 전도도에 대한 온도 의존성 을 나타내고 있는데, 온도가 상승함수록 전도도는 증가하고 있다.

그림 6. 4 probe 방법에 의한 전도도 측정 계략도

Fig. 6. Schematic diagram for conductivity measuring system by 4 probe method

그림 7. NiO 음극의 전도도에 대한 온도 의존성

Fig. 7. Temperature dependance of conductivity for NiO cathode

4. 성능 평가

단위면적은 지름 3.5[cm]의 원형 전극을 사용할 수 있도록 설계하였다. 그리고 air cylinder에 의해
서 항상 고정압력을 가할 수 있도록 하였으며, 단위전지 전극의 평판형의 heater로 감싸져 MCFC 작동온도인 650[°C]를 유지하도록 하였다. 이때 반응가스는 H2와 CO2, O2와 CO2를 혼합계조하여 사용하도록 하였다.

구조는 양극, 음극, current collector등을 cell에 위치시키고, 그 사이에 메트릭스와 전해질 green sheet를 놓아 단위전지를 구성시켰다. 구성된 단위 전지의 air cylinder을 사용하여 압력을 가해줌으로써 전지의 접촉 저항을 줄일 수 있도록 하였다. 다음 전지의 작동온도 650[°C]까지 자세 재작된 판형 heater를 이용해서 가열한 후, 가열 과정과 가스공급은 표 3과 같다.

<p>| 표 3 단위전지의 가스 공급 조건 |
| Table 3. Condition of gas supplying on unit cell |</p>
<table>
<thead>
<tr>
<th></th>
<th>온도</th>
<th>Gas 공급</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>설온 → 300°C (7.5°C/min)</td>
<td>Anode, Cathode에 oxident gas 흘림</td>
</tr>
<tr>
<td>(b)</td>
<td>300°C → 510°C</td>
<td>Anode에 N2 gas 흘림</td>
</tr>
<tr>
<td>(c)</td>
<td>510°C (유지)</td>
<td>cathode gas</td>
</tr>
<tr>
<td>(d)</td>
<td>510°C → 650°C</td>
<td>Anode gas → Fuel gas</td>
</tr>
</tbody>
</table>

제작된 단위전지의 개로전압(open circuit voltage)을 알아보기 위해서 전지온도 650[°C]까지 상승하면서 측정한 결과, MCFC의 작동온도인 650[°C]에서 Ni-10Cr 전극을 사용한 전지의 1.05[V]를 나타내므로 위의 전극을 나타내었다.12) 한편 그림 8은 온도 변화에 따른 각 단위전지의 개로전압의 나타내고 있다.

![그림 8. 온도의 변화에 따른 개로 전압](image)

Fig. 8. OCV values by temperature
Vol. 12, pp2498–2502, 1986