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Beam Transition Elements for Finite Element Analysis of
Transition Regions of Coupled Wall Structures
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Abstract

This study presents the formulation of beam transition elements and transition zone elements for the
effective finite element analysis of the transition regions of coupled wall structures. Beam transition
element can be described as the quasi beam element which is replaced by an equivalent plane stress el-
ement, keeping equally, the basic behavior of beam element, based on the kinematic and force
constraints between beam and wall element. These beam transition elements solve the incompatibility
related to different degrees of freedom between beam and wall element in transition regions. Also, the
stiffness matrices of transition zone elements which are directly connected with beam transition
elements in transition regions can be derived from the equivalent constraint conditions. These
elements provide the reasonable mesh grading schemes for transition regions and can be usefully ap-
plied to the transition regions of all structures that the interactions of wall and beam element are con-

sidered.

sRFUSR ASF0Y 2as o] =8l @ EE¢ 19953 1289 31A7A & oo
WU ZAIE 1996 6850l 1 ATHE AASHASI



W M RN MY SUR LN e w20 A

1. INTRODUCTION

Coupled wall structures or shear wall-frame
structures are frequently used as the structur-
al systems of tall buildings. In analyzing such
structures, the transition region in which con-
necting beam and shear wall are interconnec-
ted is normally of considerable interest and is
often the weakest area, In general, wall el-
ement which Is treated as a plane stress el-
ement in finite element analysis has two tran-
slational degrees of freedom per node, whereas
beam element has two translational and one
rotational degrees of freedom per node. Incom-
patibility related to different degrees of free-
dom between beamn, and wall element raises
many problems in analyzing the transition re-
gion. Therefore, the reasonable connection
systems between beam and wall element are
required to obtain the reliable analytical res-
ults for transition regions,

Many studies have been proposed to solve
this incompatibility. Beck and Coull & Choud-
hury, etc. have presented the continuous me-
dium method in which connecting beams can
be replaced by the equivalent laminas, 7*® Mac-
Leod and Weaver, etc. have presented the rec-
tangular finite element with additional one or
two rotational degrees of freedom per node to
satisfy the compatibility with beam element,
@8 Also, frame analogy method has been
proposed under the concept in which shear wal-
Is can be replaced by the equivalent columns
and beams, 1

These conventional methods show many
problems such as the phenomenon of stress
concentration in the connections, the error in
stress redistribution due to the inaccuracy in
modeling the structure, and the occurrence of
additional moments due to the inconsistency
between the center line of beam element and

the mesh line of wall element, etc.

This study presents the concept that beam
and plane stress element with different deg-
rees of freedom have very close relationship
and can be replaced each other, By this con-
cept, the stiffness matrix of beam transition
element with the nodal types of plane stress
element can be derived from the exact stiff-
ness matrix of Hermitian beam element, based
on the kinematic and force conditions, There-
fore, this beam transition element can be de-
scribed as the quasi-beam element which is rep-
laced by an equivalent plane stress element,
keeping equally the basic behavior of beam el-
ement,

2. STIFFNESS MATRIX FORMULATION OF BEAM
TRANSITION ELEMENTS

2.1 Kinematic and force constraint equations

The close relationship between these ele-
ments should be recognized though beam and
plane stress element have been considered sep-
arately in finite element analysis. Two basic
assumptions have been considered in beam for-
mulation ; the first is kinematic assumption
that plane sections initially normal to the neu-
tral axis remain plane after deformation, and
the second is force assumption that stresses
normal to the neutral axis are zero.

We can derive the concept that the degrees
of freedom of beam element can be replaced
by the degrees of freedom of the equivalent
plane stress element, namely, beam transition
element by considering constraint conditions
based on these two assumptions,

In general, a beam element model in plane
structures is considered as Fig.1 and the equiv-
alent beam transition elements are given as
Fig.2. Here, the beam transition elements are
classified as three types(BTRAN 1, 2, 3) ac-
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Fig. 2 Beam transition elements
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Fig. 4 Force constraint conditions

cording to the location and number of equiv-
alent nodes when the nodes of beam element is
replaced by the nodes of beam transition el-
ement. Also, Fig.3 and 4 show the comparisons
of the basic behaviors according to the kin-
ematic and force constraints between beam el-
ement and beam transition element.

In particular, in order to constitute the con-
straint equations from Fig.3 and 4, the assum-
ptions should be considered that the neutral
axis of beam element locates in the center and
the upper vertical displacement is equal to the
lower vertical displacement in both ends of
beam element in case that its depth is not lar-
ge.

From Fig.3., the kinematic constraint condi-
tions are given that the rotational degree of
freedom of beam element corresponds to the
couple of horizontal degrees of freedom in the
upper and lower ends of beam transition el-
ement, and the horizontal degree of freedom of
beam element corresponds to the average val-
ue of horizontal degrees of freedom in the up-
per and lower ends of beam transition element.
Thus, we can obtain the following kinematic
constraint equations.

xXi = uw -~ (d/2) x 6 (1)
X = us o+ (4/2) x 65 (2)

These equations can be written as

6; =(x5-x )/d (4)
up = (x5 < x5 072 (5)
vz s )

Also, from Fig.4, the force constraint condi-

tions are given that the moment of beam el-
ement corresponds to the couple of the hori-
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zontal forces in the upper and lower ends of
beam transition element, and the horizontal for-
ce of beam element corresponds to the sum of
the horizontal forces in the upper and lower
ends of beam transition element.

Thus, force constraint equations can be writ-

ten as
U =Py - P, (7)
Goe (8)
Miz (B5 - Py)x dr2 (9)

2.2 Formulation of transformation matrix
and beam transition element matrix

Transformation matrices [T;] for each type
of beam transition elements can be derived
from the constraint equations, Also, beam tran-
sition element stiffness matrix [K;] can be con-
stituted as eqn(10), considering the transform-
ation matrix [T;] and the beam element stiff-
ness matrix [Kg]. Also, [R;] and [D;] represant
the force matrix and displacement matrix, res-
pectiochy.

IR ) =0Ti PV {Ke) [Tu }0[Ds}

=[K: 1 [Ds) (10)

where
£rS1 0 0 -5 0 o -
i Sz S3 0 -Sp Si |
[Kel= Se 0 -5y Sg |
; S 0 0 |
: symm. Sz -S3 |
L S¢ 7

S1 = EA/L. Sz = I2E1/(L1°8 0 Sa = 6EL/(L28)
{ 4E1/L - qEl/Ly /4

( 2EI/L - aEl/Li /8

12E1/(AsGL®). B =1 - ¢

& : Shear Deforpation Factor

As  Effective Shear Area

G . Shear Modulus

Ss

[TENTENT]

In particular, a beam element has six deg-
rees of freedom in two-dimensional structures.

Here when a beam element is replaced by an
equivalent plane stress element, namely, a
beam transition element, the number of total
degrees of freedom increases according to the
additional nodes. Since beam transition el-
ement was primarily derived from beam el-
ement with six degrees of freedom, as many
constraint conditions as correspond to the ad-
ditional degrees of freedom should be added to
the stiffness matrix formulation of beam tran-
sition element, Therefore, all matrices of eqn
(10) for each beam transition element can be
given as follows, considering these constraint
conditions,

1) In case of BTRAN 1

It can be assumed that ¥z is dependent on vy,
from eqn(6). Also, from eqn(8), V, correspon-
ds to Q in node 2 of Fig.2(a) and Q: in node 3

is ignored.

[ K3 ] = stiffness matrix of BTRAN 1
[ReJ=1[1lyV;yMPo P )T

[Drd=luwuwv 6rx1y % ]7

100 0 6 0
r01oooo]
[T,]:[OOlooo
000 1/2 0 122
000 0 1 o
L0 0 0-17d 0 1/d 4

2) In case of BTRAN 2
It can be assumed that y2 is dependent on y,

from eqn(6). Also, from eqn(8), V, correspon-
ds to Qi in node 1 of Fig.2(b) and Q in node 2

is ignored,

[ k2 } = stiffness matrix of BTRAN 2
{R2) =[P 1 PrlpVoMp 7
(D2} =0xy1 x2uz vz 6217

172 0 172 0 0 0 -
'0100005
[Tz ]=1i-1/d 0 1/¢ 0 0 0
0 0 0 1 0 0
I°°°°l°j
06 0 0 0 0 1
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3) In case BTRAN 3

Similarly, it can be assumed that y, is depen-
dent on y; and y4 i1s dependent on y; respect-
ively. Also, V; corresponds to Q in node 1 of
Fig.2(c) and V, corresponds to Qs in node 3 re-
spectively, and also Q, in node 2 of Fig.2(c)

and Q, in node 4 are ignored.

{ Ka ]} = stiffness matrix of BTRAN 3

IRs ] =1Pi Qi PzP3laPal’

[Dad=0% v %2x3aysxa ]
rl/z 1wz ¢ 0 0 -

o 10 0 0 0 !
[Tal=i-1/d 0 1sd 0 G O |
i !

0 0 0 172 0 172

P00 0 0 1 0

Yo 0 0 -1/d 0 144

3. FORMULATION OF TRANSITION ZONE EL-
EMENT

In case that we use the beam transition el-
ement stiffness matrix due to constraint condi-
tions in transition region, the equivalent con-
straint conditions should be considered within
the stiffness matrix of wall element, namely,
transition zone element which is directly con-
nected with this beam transition element,
Therefore, we can reconstitute the stiffness
matrix of transition zone element, based on
constraint conditions as in chapter 2,

(K l={T ks JLTs] (11)

where

[ki] : Stiffness matrices of plane stress ele-
ments

[T.] : Transformation matrices based on kin-
ematic constraints

[K;] : Constrained stiffness matrices of tran-
sition zone elements

In particular, transformation matrices [Ti]

in eqn(11) are given as follows, according to
the connection conditions with beam transition
elements.

3.1 Transition zone elements connected with
BTRAN 1

First, since vs=v, as shown in Fig.5(a), it

can be assumed that vs; is dependent on v;. In

this case, transformation matrix [T;] can be

written as

rup- 1 0 0 0 00 05ru s rur -
vy ;01 0 0 C O 0:;\): Ty
uz 0 0} 0 0 O Ogluz. i uz .
f vy :‘0001000]‘\‘2’:{7,]{»2‘
i usz «0 00 01O 053\13. i u3
fva 10 00 100 Olfu; {ua

i ug 00 00 0 1 0 f-va- “vg -
“vg- -0 00000 1-

(12)

Secondly, since vs=v; as shown in Fig.5(b),
it can be assumed that vs is dependent on v,

In this case, transformation matrix [T2] can be

written as
ru rl 00000'000"{'\!1*I ru
bvif 701000000 0w Py |
fuz: 1001 00000 O0]ful | uz !
Pvg ! ;oooxooooo;wg iva |
u3é=:°000100005“3!:[T2}1“3’
V| ;000001 00 0:tvai by
lug¢j {0000 001 0 0fiugt !
ive: 100000001 0ffvg, va
fus{ (00000000 1!l-us- “us
Lvsf 0001 0000O0O0-

13)

3.2 Transition zone elements connected with
BTRAN 2
First, since v,=v; as shown in Fig.6(a), it
can be assumed that v, is dependent on v;. In
this case, transformation matrix [T;] can be

wriiten as

rux*l r1000000r\n1 ru1~:
vnl 0100000]lv1( by
vz 001000 0]/ u! |uz:
VZ‘=|0001000|V2|=[13] vz |
us| [0 0001 00/iul P us |
va |0000010|[v3‘ 'Vsj
|u4J LOOOOOO li~u4J “ug
Ly 510000 O0-
(14)
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(b) 5-node transition zone element

Fig. 5 Transition zone elements connected with BTRAN 1

Secondly, since v;=v, as shewn in Fig.6(b),

it can be assumed that vs is dependent on V1.

In this case, transformation matrix [ T,] can be

written as
Fupt -1 00000 C 0 0--uy ~u; -
Ty ;01000000 0y V1
Cuz fOOlCOOCOGju: Couz
e 000 00000 vo !
fux =0 0001 0C 00 us=[Tel wz.
va 00 C 0 01 ¢ 0 €} vy fas
L oug ‘000000}00{u4 ;u4‘
Cvad 6.0 C ¢ 0 G C 1 0:fve Dve
*us o0 Cc 000 C O 1 i-us -us *
~vs - ~0 0 ¢ CO0CC h-
(15)
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(b) 5-node transition zone element

Fig. 6 Transition zone elements connected with BTRAN 2

3.3 Transition zone elements connected with
BTRAN 3

We can apply the transformation matrices of
eqns(14), (15) to the transition zone element
which is connected with the left side of beam
transition element BTRAN 3 and can apply the
transformation matrices of eqns{(12), (13) to
the transition zone element which is connected
with the right side of beam transition element
BTRAN 3.

4. NUMERICAL RESULTS AND DISCUSSIONS

A typical coupled wall structure is con-
sidered as a numerical example to verify the
validity of beam transition elements according
to several mesh gradings of transition zone, In
order to obtain the reliable numerical results,
we introduce the input process of element data
from the program ADINA and add the subrout-
ines which represent the beam transition el-
ement stiffness matrices.

Fig.7 shows a typical coupled wall structure
model and Fig.8 shows the several analytical
models and mesh gradings for Fig.7.

CASE 1 model as in Fig.8(a) can be con-
sidered as the conventional FEM model, and is
entirely subdivided as the mesh of 4-node plan-
e stress elements, Beam transition elements
and . transition zone elements are applied in
CASE 2 and 3 models as shown in Fig.8(b)(c).
These transition zone elements provide the ef-
ficiency in mesh grading of transition zone, re-
lated to the depth size of connecting beam,
Also, Fig.9 shows the several modeling types
for a connecting beam. A connecting beam can
be replaced by two beam transition elements
and one beam element as shown in Fig.9(a), or
can be directly replaced by only one beam tran-
sition element BTRAN 3 as shown in Fig.9(b).
The analytical model for frame analogy met-
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P
L 4

L1 | Lb-(Li+L2) L2

b Table 1. input data for CASE 4 model
Input data 1,(x10%cm’) | A, (cm’) A (cm®)
(a) Beam transition element BTRAN 1, 2 and 2 beam Equivalent column 777.60 7200.00 6072.48
element Equivalent beam 771.60 7200.00 6072.48
Connecting beam 1.51875 900.00 759.05
- ETRAN3 Table 2. Length effects of beam transition elements
i (unit : cm)
Case | BTRAN1 | BTRAN2 Beam element
| Lk X No. (L) (L) L,—(L,+L,)
r ‘ 1 60.0 60.0 150.0
2 60.0 90.0 120.0
(b) Beam transition element BTRAN 3 3 90.0 60.0 120.0
4 90.0 90.0 90.0
5 135.0 135.0 0.0

Fig. 9 Models for connecting beam
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hod is considered as CASE 4 model and its in-
put data are given in Table 1. Table 2 shows
several cases in order to evaluate the effects
of the length variations of beam transition ele-
ments for Fig.9(a) when beam length L, is
270cm,

Fig.10 shows the shapes of lateral displace-
ments according to the height from ground lev-
el. Also, Table 3 shows the comparison of end
forces based on the behavior of connecting
beam.
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Fig. 10 Lateral displacements according to the height

Table 3. The comparison of end forces of connecting

beams

Mesh M, | M, P v
model Story (t-cm)|(t-cm)| (1) (t)
CASE 1 4 304.58 { 318.87 6.36 2.31
3 381.60 { 375.23 2.02 2.80
2 308.57 | 307.60 | —0.25 2.28
1 183.17 | 183.65 | —0.30 1.36
CASE 2 4 306.18 | 317.96 6.32 2.31
3 366.63 | 360.27 2.08 2.69
2 296.18 | 295.41 -0.27 2.19
1 175.89 | 176.33 —0.32 1.30
CASE 3 4 327.12 | 339.16 6.32 2.47
3 368.98 | 363.75 2.09 2.71
2 299.26 | 298.39 —-0.27 2.21
1 178.53 | 178.91 —0.31 1.32
CASE 4 4 410.10 | 403.30 6.85 3.01
3 393.30 | 389.50 1.28 2.90
2 321.30 | 320.40 | —0.24 2.38
1 188.90 | 189.00 | —0.21 1.40

The characteristics and validity of beam
transition elements can be evaluated from thes-
e numerical results. The results in case that a
connecting beam is replaced by two beam tran-
sition elements BTRAN 1, 2 and one beam el-
ement as in Fig.9(a) are equal to the results in
case that a connecting beam is replaced by
only one beam transition element BTRAN 3 as
in Fig.9(b). This shows that we can obtain the
same results for the behavior of the connect-
ing beam irrespective of the length variations
of beam transition elements BTRAN 1, 2 as in
Table 2. Therefore, we can obtain the ef-
ficiency in mesh grading and the simplicity in
the input process of data in that a connecting
beam can be replaced by only one beam tran-
sition element BTRAN 3,

In particular, CASE 2 and 3 models using
beam transition elements show much closer res-
ults to CASE 1 model, compared with CASE 4
model. Moreover, the convergence of beam
transition elements can be verified in that
CASE 2 model which is more refined than
CASE 3 model in the mesh of transition zone
gives the improved results.

5. CONCLUSIONS

It has been shown that beam transition el-
ement method presents the improved results
than frame analogy method, and is superior to
the conventional FEM in saving the computer
time and in simplifying the input procedure,
based on the numerical investigation, In par-
ticular, the same results have been obtained ir-
respective of the length variations of beam
transition elements BTRAN 1, 2 in modeling
the connecting beam. This shows that beam
transition element represents exactly the beh-
avior of the connecting beam and a connecting
beam can be replaced by an equivalent plane
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stress elements, namely, a beam transition el-
ement BTRAN 3. Thus, this beam transition
element BTRAN 3 provides a great efficiency
in the analysis of the transition regions of coup-
led wall structures and also can be used as a
basic finite element in the substructuring pro-
cess. Also, the transition zone elements, re-
lated-to these beam transition elements, pro-
vide the great flexibility in modeling the con-
nections of coupled wall structures.

In conclusion, beam transition elements pro-
vide the effective and reliable results in the
analysis of the connections of coupled wall
structures, the accuracy in modeling connect-
ing beam, and the simplicity in input process
of data. Also, these beamr transition elements
and transition zone elements can be usefully
applied to the transition regions of all structur-
es that wall and beam element are interconnec-
ted.
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