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Empirical Bayes Problems with Dependent and Nonidentical
Components?!)

Inha Jung?, Jee Chang Hong? , Kang Sup Leed
Abstract

Empirical Bayes approach is applied to estimation of the binomial parameter when
there is a cost for observations. Both the sample size and the decision rule for
estimating the parameter are determined stochastically by the data, making the result
more useful in applications.

Our empirical Bayes problems with non-iid components are compared to the usual
empirical Bayes problems with iid components. The asymptotic optimal procedure with
a computer simulation is given.

1. Introduction

Suppose that the rate @ at which defectives are produced by a given production process
varies from day-to-day. On each day a random sample of at least two parts is taken at a
cost of $.50 per part and an estimate @ made with loss $100( #—0)% If the sequence
8, 6, is modeled as a stochastic sequence with independent and identically G-
distributed variables with G unknown, then the empirical Bayes method is appropriate. When
G is restricted to the Beta(e, B) family and the sampling is two-at-a-time, we show how
to construct a decision procedure with risk plus cost for observations converging to the
lowest possible risk, whatever be @ and A In Section 3 we find that in this case the
envelope risk plus cost is no greater than $18.00 per day, the minimax risk plus cost.
Against the least favorable a= =2, the empirical Bayes risk is estimated to be below
$20.00 after 15 days. The empirical Bayes sample size converges to the optimal 8x2=16

parts here. Other a, B values are tested in the computational work of Section 3. In this
section and the next we dovelop the empirical Bayes procedure and prove its asymptotic
optimality.

1) Research of the first author was supported by Korea Science and Engineering Foundation
Grant(KOSEF 901-0105-024-1)

2) Department of Mathematics, Ajou University, Suwon, 441-749, KOREA.

3) Department of Computer Sciences and Statistics, Dankook University, Seoul, 140-714, KOREA.

_145_



146 Inha Jung, Jee Chang Hong, Kang Sup Lee

Let X, X5, be iid. B(m, 6), where m is a given positive integer and the parameter @

has prior distribution G in the beta family {Beta(a, Ala>0, 8>0). Estimation of & is
considered under the squared-error loss. Here parameter space ® and action space A are
[ 0,1] . Let ¢>0 be a constant cost per observation.

Let deD, be a decision rule based on the observation X”=(Xj, ---, X,). The decision

loss plus cost for observation is given by [ 8—d(X™] 2+cn. Let R, denote the risk and

Bays risk of the decision rule deD,, ie.,

R0, d)=E4 6-d(X™] * (1.1)
R.(G,d)=E¢R,(8,d) (1.2)

and 7, denote the risk and Bayes risk of the decision rule deD, including cost for

observations. Then
7.(0,d)=R,(0,d)+cn , (1,3)
G, d)=R,(G,d)+cn . (1.4)

For each G and n=1, 2,;-let d¢z=D, be a Bayes rule. Thus

inf R,(G,d)=R.(G,dz) (15)

deD,

Let R,(G)=R,(G,d;) and

(G =R, (G)+cn . (1.6

For G=Beta(a, f)we let € and 7 denote the first two moments, that is,

_ _ a
§=Ec0="13
p=Eg 6" o(a+1) 1.7

T (a+P(at+hFD
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and note that 0<¢& (K &1 since ad0, 8>0. Also

EX,'= mS
EX:=m(&—n)+m?y, (1.8)
and from (1.7), it follows that
_ _ B — _
P € )] p=-1=8(=n (1.9)

n—& n—¢&
In the empirical Bayes application, (1.8) and (1.9) will be useful in the construction of

consistent estimates for @ and B The posterior distribution of @, given X" is

Beta(a+#»n X ,, B+mn—nX,). Hence a Bayes rule dgeD, is

a 7
a+B+mn + a+B+mn Xn (1.10)

do(X") =

if G=Beta(a, B).
Let G=Beta(a, ), G = Beta(a ,8). It can be shown that

NE 1 . N2 _ . N ‘g
R.(G,d¢) CET Ty {[ (@ +B)=mn]l p—[ 2a (a +B)—mn] £+ (a)°} ,(1.11)
|RAG,dg)—RAG ,d )| <2e—&|+In—7] (1.12)
and ‘
_ aB
R &) =T B (at B+ D(at BT mn) (1.13)
From (1.13), the minimum Bayes risk including cost for observation is
— af -1
r.(G) = CEY [ CET ) (a+B+mn)  +cn (1.14)
We seek the optimal sample size #", a minimizer of 7,(G) among n=1,2,-. 7,(G) is

. . —(a+B)
a continuous and convex function of real n> m .
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Consider the equation

—-4a — maf _
0=an O == T pla+rgrD (et Btmm) e
Its larger solution is
1
—[{m aB :
”_{( c (a+,8)(a+,8+l)) (‘”"3)} /m (1.15)

and an optimal fixed sample size #* = n"(a, B) is given by

1 , if w1
, if ve{1,2,3,...}

*

v

n={1 v o[ v] +1
depending on which integer
minimizes r,(G)

(1.16)
, otherwise

Here [ ] denotes the greatest integer function and we take n*=[ ] if both [ ]

and [ v] +1 minimize 7,(G).

Since R(G)<.25 for all G, it follows that #’<(.25+c)/c for all G. If a, B were

known constants, we can use dgED ,. to achieve minimum Bayes risk, i.e.,

A G =min{r,(B|n=1, 2,--+}

In section 2, we show how (a, ) is estimated in the empirical Bayes problem with this
component and establish the asymptotic optimality for the resulting procedure.

In section 3, we give the results of computer simulations that provide estimates of risk
behavor for small to moderate number of component problems.

2. An Empirical Bayes Decision Procedure

Consider the binomial component problem of the last section. Let 80, @0 be initial

nonrandom estimates of a, # and the N1=n*(ao, BO) be the sample size chosen for the

first component. (See(1.16) for the definition of the optimal fixed sample size function #".) Let
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X'=(Xy, X, ..., Xinv,) denote the vector of observations from the first component.
We will define a sequence of estimates a; B; based on (X ! X% ..., X. Then for
component i+, the empirical Bayes sample size is Ny = n'(a; B) and the empirical

Bayes estimator of 8,4 is

i 2;+N;Y; .
di (XY= a"+3 L =01, . @.1)
i i i+l
(see (1.10)), where
1 X
i=]—V—;§1X"’ 1=1,2,... (2.2)

We will give estimates based on the method of moments and will find it useful to consider

N;
DXL, i=1,2, .. 2.3)

and denote average of Y}, Z; j=1,2, ..,1 as Y., Z;, i=1,2,

Let ¥, be the trivial o-field and let F,=o(X' X ..,X), j=1,2, ... The sample

size N;is ¥ ;- measurable, j=1,2, ..., and we see that
E(Y)F ;) =mé , =12,
BE(Z)F j-)=m(é—m+m'n . =12, .. (2.4)

follow from(1.8).
Since Y;<m and Z,-smz, j=1,2, ..., the strong law for centerings at conditional

expectation(see Hall and Heyde(1980, Theorem 2.19)) implies

Nlb—‘

S R(Y)F o) — 0 as.

i=1

B(ZJF ) — 0 as. 2.5)

N
Mﬁ

=1

-~
Il

From (2.4) and (2.5) we have
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Y, mé a.s.
Z:— m(E—D+mPy  as. (2.6)

Lemma 2.1. Let m=2. The estimators defined for i=1,2, ... by

=
~ _ Z,-7Y,
and
o] 2LE50] '
= ThE
Bﬁ[ U-f%%;va 2.8)

are a.s. consistent. (In (2.8), take ratios 0/0 to be 0.)

Proof. The a.s. convergence of the estimates (2.7) follows from (2.8). The a.s. convergence
of the estimates (2.8) follows from (1.9).

Let the sample size sequence N=(N;, N,, ...) be defined by N;y,;=n"(a; B),

i=0,1,2, ..., where =" is defined by (1.16). Let the empirical Bayes decision rule

d=(d;, d,, ...) be defined by (2.1) and (2.2). The following lemma is used to establish the

asymptotic optimality of our empirical Bayes procedure (N, d).

Lemma 2.2. For priors ® and v, let n=n"(w), m=n"(v) be optimal fixed sample sizes

and let df,, d*e D, denote Bayes decision rules with respect to @, v for £=1,2, .... Then

0 < 7m(w, d:n)—r(w)
< sup [Ry(w, d)) =R{v, d)l+ sup |Ryw, di)—Ryv, db)l 2.9)
k k . .

Proof. This is an immediate consequence of the well-known triangle inequality.

Theorem 2.3. Let m=>2. The empirical Bayes procedure (N, d) defined above is
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asymptotically optimal at each G= (e, A).

Proof. By lemma 2.1 and (2.6),
0<rn, (G, dis1) —HG)<4|&,—8+27,—7 (2.10)

Since |&;—&<1 and |7,—7<2 for all £, the Dominated Convergence Theorem and (2.9)
in lemma 2.2 imply that Ery, (G, d;+1) = HG).

3. Some Empirical Bayes Risk Calculations

In this section we treat the empirical Bayes problem of the last section. All risks are
multiplied by 1000, which corresponds to a component with loss function 1000(a—6)? and
cost 1000c per observation. .

We calculate the envelope risk #{a, B) and the optimal sample size( s) for various m, ¢, @,
and B and present some of the results in Table 1. We include the mean and standard
deviation of the Beta(a, B8) prior in each case.

Figure 1. below is a graph of the envelope risk function r{a, @) plotted against a on a log

scale. For this we choose m=2 and c¢=.00l.

L1
.001 0 A 1 2 10 100 1000

Figure 1. A Risk Envelope
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Table 1. #°(a, ) and Ha, B)

m = 2 m = 3
Prior c=.001 c=.002 c=.001 c=.002
a B u o n' r n' 7 n' n' r
01 01 050 045 4 9.081 3 12720 4 7415 3 10529
01 03 025 0366 5 10151 3 14371 4 8320 3 11.699
01 09 010 0212 4 9.000 3 12429 4 7462 2 10429
01 19 005 0126 3 6958 2 9.278 3 5879 2 7.958
02 02 050 0423 6 11760 4 16503 5 9638 3 10529
02 06 025 0323 6 12510 4 17470 3 10274 3 11.699
02 12 014 0.226 5 11266 4 15599 4 9330 2 10429
02 18 010 0173 4 10000 3 13500 4 8286 3 11455
03 03 050 03% 7 13421 5 18844 5 11010 4 15440
03 06 033 0342 7 14065 5 19.657 6 11569 4 16.160
03 12 020 0.253 6 13111 4 18105 5 10818 4 15111
03 18 014 019 5 1183 4 16213 5 9851 3 13473
05 05 050 034 7 15333 5 21.364 6 12579 4 17615
05 10 033 0298 7 15602 5 21594 6 12838 4 17.877
05 15 025 0.250 7 14812 5 20417 6 12250 4 16929
1.0 10 050 0289 8 17259 5 23.83%9 7 14246 5 19.804
10 15 040 0.262 8 17266 5 23.714 7 14295 5 19796
10 20 033 0236 8 16772 5 22821 6 13937 4 19.111
15 15 050 0250 8 17868 5 24.423 7 14813 5 20417
15 20 043 0233 8 17768 5 24.109 7 14775 4 20289
20 20 050 0224 8 18000 5 24.286 7 15000 4 20500
30 30 050 0.189 7 17714 4 23306 6 14929 4 19905
40 40 050 0.167 7 17101 3 21.873 6 14547 3 19.072
50 50 050 0.151 6 16331 3 20.205 5 14091 3 17962
100 100 050 0.109 1 11823 1 12823 2 11158 1 12352

For m=2, c=.001 and selected a, B values, we obtain Monte Carlo estimates of the
empirical Bayes risk of our procedure with inital starting estimates 50= Z?O= 1. This is done
for stages =10, 15, 20, 25, 50 and 100 and the result are presented in Table 2 along with

the standard errors of the estimates.

Table 2. Estimated Empirical Bayes Risks (m=2k, c¢= .001)

Estimated Empirical Bayes Risks(Standard Errors)

a Je) 10 15 20 25 50 100  Envelope Risk
0.1 0.1 10.22 9.83 10.13 10.00 9.28 9.13 9.081
(0.18) (0.07) (0.14) (0.14) (0.05) (0.01)
0.5 05 17.31 15.97 15.68 15.56 15.40 15.37 15.333
(0.67) (0.10) (0.05) (0.03) (0.01) (0.00)
1.0 1.0 21.27 19.05 18.26 18.05 17.41 17.32 17.259
(0.73) (0.43) (0.25) (0.28) (0.02) (0.00)
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<HEAE>
Estimated Empirical Bayes Risks(Standard Errors)
a B8 10 15 20 25 50 100  Envelope Risk

2.0 2.0 21.26 19.67 19.89 19.44 19.09 18.27 18.000
(0.43) (0.25) (0.30) (0.25) (0.20) (0.04)

3.0 3.0 20.43 19.73 19.36 19.75 18.73 18.47 17.714
(0.28) (0.24) 0.21) (0.25) (0.14) (0.17)

4.0 4.0 19.98 19.34 19.05 18.95 18.66 18.10 17.101
(0.29) (0.19) (0.16) (0.16) (0.15) (0.12)

0.1 09 12.25 12.58 13.12 13.05 10.69 941 9.000
0.27) (0.34) (0.42) (0.44) (0.31) (0.31)

0.2 1.8 1279 13.34 13.24 13.28 12.38 10.86 10.000

(0.19) 0.24) 0.29)  (0.29) 028 (017

4. Concluding Remarks

In discussing the empirical Bayes decision problems, problems with independent and identical
components were usually considered. (Gilliland, Dennis and Hannan, James(1977), Johns, M.V.
and Van Ryzin(1972), Morris, Carl(1985), Robbins, H(1951), Robbins, H(1956)). O’
Bryan(1972,1976) considered a variant of the standard empirical Bayes problem where the
sequence of component problems are not identical in that the sample size may vary with the
component problem. In O’ Bryan(1972,1976), sample sizes are given nonrandom numbers and
component problems are independent. In our empirical Bayes approach data accumulated over
past component problems are used in selecting both sample size and decision rule to be used
in the current component problem. The component problems are neither independent nor
identical. Our method of estimation in the empirical Bayes version requires that m=>=2. This

assumption can be removed if we require N;=2 and use the estimators based on the pooled

data. Requiring that N,;=2 i.0. would suffice.
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