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Test for Trend Change in NBUE-ness
Using Randomly Censored Data

Dae-Kyung Kim!), Dong-Ho Park?), June-Kyun Yum3

Abstract

lLet F be a life distribution with finite mean 1. Then F is said to be in new
better then worse than used in expectation (NBWUE( p)) class if ¢(u) = u for
O0<u<ty and ¢(u) < u for to<u<l1, where ¢(u) is the scaled total-time-on-test
transform and p=F(to). We propose a testing procedure for Ho: F is exponential
against H) : NBWUE( p), and is not exponential, (or H;’ : Fis NWBUE (p), and
is not exponential) using randomly censored data. Our procedure assumes knowledge
of the proportion p of the population that fail at or before the change-point to.
Knowledge of to itself is not assumed. The asymptotic normality of the test statistic

is established and a Monte Carlo experiment is performed to investigate the speed of
convergence of the test statistic to normality. The power of our test is also studied.

1. Introduction

For many practical situations where it is more reasonable to assume a certain type of trend
change for some parameters, the statistical inference regarding such parameters attracts a
great deal of interests among reliability scientists, engineers, or other statisticians recently.

Because of its useful applicability, many authors have considered the testing procedures for
non-monotone classes of life distributions such as bathtub-shaped failure rate (BTR),
increasing then decreasing mean residual life (IDMRL) (for example, Matthews, Farewell and
Pyke (1985), Guess, Hollander and Proschan (1986), Park (198R), etc.).

Klefsjé (1988) proposes a nonparametric procedure intended for testing exponentiality against
the situation where the life distribution changes from the new better than used in expectation
(NBUE) to new worse than used in expectation (NWUE), assuming knowledge of the
proportion p of the population that fail at or before the change-point fo. Such a trend
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change can be used in modelling for several maintenance and replacement policies. Mitra and
Basu (1994) refer to Klefsjo's class as NBWUE (p) class.

In Section 2, we propose a testing procedure for FHo: F is exponential against H :
NBWUE( p), and is not exponential, ( or H;’ : Fis NWBUE (p), and is not exponential)

using randomly censored data, assuming the same condition as in the Klefsjo (1988).

In Section 3, Monte Carlo experment is performed to investigate the power of our test
procedure and the speed of convergence to normality of the proposed test statistic. Also we
study the efficiency loss to the presence of censoring. Finally, Section 4 contains conclusion.

. 2. NBWUE( p) test with randomly censored data.

To derive our test statistic, we assume knowledge of the proportion p of population that
fail at or before the change-point. Note that (p=F “'(p) is assumed to be unknown.

We are interested in testing

Ho: F(x)=1-exp(-x/1), x=0, 1 is unspecified (2.1
VErsus

H; : F is NBWUE( p} ( and is not exponential). (2.2)

A natural test statistic to consider is

1
T<F>=f0p ((w-wdu + [ (u=elu)du
/]

Lo

1 (L ® —2 - — 2
= Frods [ Fods-2F o) [ Flods)+1/2-p*
L (" .
= [ strenars), (2.3)

1

Flu) __
where ¢(u) = e L F(t)dt, 0=<u=1 is the scaled total-time-on-test{TTT) transform and

-p*+2p+1/2-2u  for 0<u< D,

Jw= (2.4)

-p-3/2+2u for p<u<l.
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1
B(t)Eft J(wdu

[(p(2-p)-(12+01(1-t) for 0<t<p,
= 2.5
[-p*=1/2+¢)(1-¢) for p<tr<1.
If F has a finite mean U, then
[ s iE)aFe) = [ s dBF(N= [ B(F(s)ds 26)
o o 0
and thus we obtain another expression of T(F) as
T(F = —— [ B(F(s)ds. @7
JTRN S

Klefsjo (1988) obtains the test statistic for testing Ho versus Hi1 by replacing F by Fi

in the expression of (2.7), where F. is an empirical distribution function of F. T(F,) can be

expressed as

1
Hn

n-1 :
T(F,) = [;:) B("#)(X(hl)‘X(i))]

1l < el SRR &
= = SXGIBC=H)-B(E)),

In this paper, we extend Klefsjo (1988) results to the case when the data is incomplete. In
many medical setting and industry the data are incomplete due to a number of reasons. Let
X1, X2, Xn be iid. F. F is the life distribution of the person (or item). Let Yi,Y2,-- Y,
be iid. G. G is the censoring distribution. We assume F and G are continuous. In this

setting we observe (Z;,8;), where

Zi=min(X;,Y ),
and
1 for X;<Y;,
8,=1 [Xi<Yi]= i=1,2,,n.
0 for X;i>Y;,

Note that if 8;=0 the i-th observation is censored. If 8;=1 we observe the actual time of
failure (end-point event). We also assume that X;’s are independent of VY, ’s. Thus
2,22, Zn are iid according to the distribution K, where
1-K=K=F G=(1-F) (1-G.

To derive our test statistic the NBWUE( p) procedure based on censored data, we use the
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Kaplan-Meier estimator (1958), F.. The Kaplan-Meier estimator of

F(x)=1- F(x) is defined as

—I==)" for 0=<x <Z(m, 2.8)

1= Fa(0= Fal0) =T G is0sm
where Zw=E=Z@<<Zm are the order statistics formed from Z,72-,Z. and )

indicates whether Z () is uncensored (&(;=1) or censored (8 »=0), i=12--n When

censored observations are tied with uncensored observations, the convention is to treat

uncensored observations of the tie as preceding the censored observations of the tie. Also, we

treat Z(» as an uncensored observation whether or not it is uncensored by convention. It is

also assumed that F,=0 for x=Z(). Fn reduces to empirical distribution function when

all observations are uncensored. Our test statistic is obtained by replacing F of (2.7) by
F, , Kaplan-Meier estimation of F and we have

1
Hon

TC By = fo B( Fo(s))ds, (2.9)

where ﬂn=J(; ?\n(s)ds.

To obtain the asymptotic distribution of our test statistics, we assume the following

conditions on F and G.

FYn i
(i) [ (G ¢ w (2.10)
(V]
and
.. © -2 Y =2 — -1 172 v
(i) fo [ Fix) fO[F Gl 'dF 1V ¢ oo, (2.11)
Let

Py

D S O S T
T B,) = u,,fo B(Fu(o)dt and  T(F)= fo B(F(x))dx.

The derivation of asymptotic normality of 7Y F.) is similar to that of Guess (1984), using
the techniques of Joe and Proschan (1982) and Gill (1983).

Under the assumptions (2.10) and (2.11), using Theorem 1 of Joe and Proschan (1982) it can
be shown that

n'2 [TC F)-T(FP)] - 2 N, o°,(F,G) as n — o, (2.12)
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where

J(w) = J(w) - T(F)

min (x,y)

and oz,-(F,G>=(fo foJ‘(F(x)u‘(F(y))F(x)‘ﬁ(y)fo [ F° Gl 'dFdxdy )2

Note that under Ho, [ B(F(x) =0 and o, (F,G) = 0%(FG).

Straightforward calculations show that under Ho, we have

n 2 TCF) — 2 N, 6% (F @) as n — o, (2.13)

where

1 — ——
ozo(F,G)=L B0 (1-0 ' [ K F ()] ae, (2.14)

When there is no censoring, (2.12) reduced to an asymptotic result in Klefsjo (1988).
The null asymptotic variance Uzo(F, () depends on the nuisance parameter (. To define

the test statistic, we must obtain an estimator of the null asymptotic variance which is
consistent under HoUH):. The following proposition can be proved using the similar

techniques as in Jeong (1992).
Proposition 2.1. Suppose that F and G are continuous distributions and G (1= 7_1(1).

4
Define h(f) = fOBz(u)(l—u)'l du 0<t<1. Let 0 <7 <I.

Then

Fl(n R Fl7) _
fo [ R (x)]1 7 dh( Fa(x)) —o fo [ K ()] 'dh(F(x))as n—oo,

(2.15)

where K. is the empirical distribution function based on the observations Zi,°--,Z. and

En = I_Kn.

Fy
Note that ¢ % (F G) = fo [K(x)1"! dh(F(x)). We have been unable to show that

A N .
fo [ Kn(x)1'dh( F.(x)) converges in probability to ¢ 2 (F, G) as n—. Thus we

— Fl(m _ ~ N
use 002= J(; [ Kn{x)]dh( Fn(x)) as an estmator of o “o(F, (&), where
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Fin)y
7€(0, 1) is chosen so that the limit fo [K(0)1 ' dh( F(x)) is approximately

¢ % (F, G).
As our test statistic for testing Ho versus Hi for randomly censored data, we propose the

following scale invariant statistic

TS = n*[TC F))/ 5o. (2.16)

i

Consider the test which rejects the null hypothesis of exponentiality in favor of the
alternative Hi if Thn = z., where z. is the upper a -percentile of the standard normal

distribution. Under some conditions given in Theorem 2.1 this test has approximate a

-level for n sufficiently large under Ho.

Theorem 2.1. Let > 0 be a fixed constant which is "very small” and let 0 {7 <1 be
1

such that f (1-t)%dh(t) ¢ e. Let F be the exponential distribution with mean .
n

Suppose that the censoring distribution G is continuous and that G(x) =[ F(x)1? for all

x=2F Y 7), where 8<[0, 1) . Also suppose that & is “much smaller” than ¢ %(F, G).

Then for z)> 0, P(Tn> z) = 1 - #(2) for all n sufficiently large, where ¢ is the standard

normal distribution function.

Proof.

o Fl'g)  __ )
By Proposition 2.1, ¢ N fo [ K(x)] 'dh(F(x)) as. Assumptions (2.10) and (2.11)

are satisfied. By the definition of 7 and ¢,

FY } 1
Joo TR anFG) = [ TRF™ (e)ldn(o)

1 q)
1
18
< L(l D) (e,

By Slutsky'’s Theorem, the conclusion of the theorem follows.

Because of the difficulties in proving the consistency of the estimator of asymptotic variance

2 . . . . .
Oo°, we are more insterested in the speed of convergence of T to normality by simulation
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study. These simulation results are given in Table 1.

The NBWUE(p) test procedure rejects the null hypothesis of exponentiality in favor of the
alternative Hi: F is NBWUE(p) (and is not exponential) at the approximation level a if

ThZ za. (2.17
Analogously, the approximate a level test of Ho versus Hi" F is NWBUE(p) (and is not
exponential) rejects Ho if
Th<- za. (2.18)
Using (2.12) and Proposition 2.1, it can be shown that the NBWUE( p) test or NWBUE( p)
test is consistent against H.
Computational formulae for the given statistics are as follows. Let &1 { - { £ be the
ordered distinct uncensored values among Zi, -, Z» and let €0 = O . Since we treat Z(m
as an uncensored observation whether or not it is uncensored, &m = Z( . Computational

formulae for T( F,) and oo are given below.

T( B = :",;{:j[m Falti) - BOEa(E],
T = 20 R (65017 A Bo(g) - h( BalEi0N],

where the sum is over { Ji ;< F\,,A( 7) } We assume that ﬁn_l( 7)=2Zn=Em.

Direct, but tedious calculations yield

1 2 3 1 3

ol a2 2 3 3L 2 _ 3 22
4(] t) 3(p+2p 2)(1 t) 2( +2p 2)(1 t)
1 2 3 1 1 )
+?(-p +2p—'7)(-3p2+6p——2—)+—5' if 0t<p,
= 1 2 1
Ao =Lt £ gt D0t 4 (ot k-0
+ 2 (2pP-2p+1)(1-p)*+ (2p*- 4p*+3p-D(1-p)’
1 1 1 .
+—6'(-p2+2p——g-(—3p2+6p—7)+7 if p<Lt<l.
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3. Monte Carlo Experiment

To investigate the speed of convergence of the test statistic 7% to N(0, 1) under Ho and

the power of the proposed test procedure, a Monte Carlo experiment is performed. The life
distribution F that we use is exponential(1) ie., F(x) = 1 - exp(-x), x=>0. The censoring

distribution G is exponential( 8 ) for 8 = 1/4, 1/9, ie, G(t)=1-exp(-t/4), G(t)=1-exp(-t/9).
This results in censoring pattern of about 20%, 10%. The sample sizes are
n=10,20(20)60,100. Table 1 presents the fraction of times that Hy is rejected in favor of
H: : F is NBWUE (p) (and is not exponential), with 1000 replications for selected values of

sample size n and p for the given censoring distributions. Also, Table 2 shows the simulated
power of the NBWUE(p) test at 5% level of significance against the lognormal alternatives
for the same censoring distributions, where the lognormal random numbers are generated for

# =0 and various choices of o by the Statistical Analysis System (SAS) program. It is
well known that the lognormal distribution is upside-down bathtub-shaped failure rate (UBR).
If a continuous and strictly increasing life distribution function F is UBR with mean 4, then

F is NBWUE (Mitra and Basu(1994)). Using the results by Park (1988) it can be shown that
the failure rate of the lognormal distribution with parameters # and o ° changes from
increasing to decreasing at to( ¢, o %), where to satisfies
gauf((log to-p)/ o)
= 1-(1/V2r) (o /(o “+logto- 1)) exp(~(logto- #)°/26 2).

Thus, the lognormal distribution has the NBWUE distribution with change-point at
p = F(to) = gauf((logto - ) o), where F( +) and gauf(-) are the lognomal and

standard normal cdf’s respectively.
In addition, we study the efficiency loss due to the presence of censoring. Since the statistic

introduced in Section 2 is a generalization of the T, statistic of Klefsjo (1988), we find it
interesting to compare the power of T, test based on n observations in the uncensored case
with the power of T3 test based on n’ observations in the randomly censored model. Since

T» and T have the same asymptotic means, the ARE of TS with respect to T» can be

computed as
k = ec(Th,Th)

o 1 — - -
= [1/12—p~<1—p>2]/f0 BAO(1-0  [R(F (] \ar.

Note that the efficiency loss due to censoring is measured by 1-k. We consider the case
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where the censoring distribution is exponential, that is G(x) = exp(-68x), x=0. To

satisfy the condition sup{ [F(x)]' * [G(x)]"' xE[0, )} (o, for some O (e I,

we must impose the restriction & <1. Then we obtain

ec(TSTy) =  [1/12-p°(1-p)?) /[(2p-p*-15)*+(4p3-8p*+6p-2)
(1-p) % 1(1-6) '+ [ (4p-2p*-3)-(4p-4p°-2) (2.19)
(1-p¥fN2-6)"1+ (3-6)".

In Table 3, the values of eg(T%, T.) are given for several choice of 6 <1.

4. Conclusions

In Table 1, we may conclude that convergence of the test statistic 75 to N(O0,1)
under H, is somewhat slow in general and not always regular. In view of Table 2,

when p is further away from O or 1, the test does not perform very well. However,
if p is close to 0 or 1, our test performs reasonably well. In fact, the most
interesting situation would be when p is relatively small, which describes the
phenomenon known as "infant mortality”. Such situations also arise "Burn-in” model.
Thus, it is encourging to know that our test procedure performs well when p is

close to 0.
Table 3 shows that as # tends to 0 (corresponding to the case of no censoring),
the efficiency loss 1-k tends to 0, which is as expected.
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TABLE 1

Empirical test size of NBWUE ( p) test from 1000 replications when

the censoring distributions are

Gix) = e

iy and G(x) = e gx.

1%
5%
10%

P=0.1

P=0.3

P=05

P=0.7

P=0.9

10

0.004(0.004)
0.112(0.012)
0.022(0.025)

0.002(0.009)
0.014(0.023)
0.026(0.046)

0.019(0.014)
0.055(0.038)
0.083(0.086)

0.027(0.039

0.159(0.161

0.086(0.076)
0.196(0.192)
0.289(0.266)

20

0.006(0.007)
0.022(0.022)
0.033(0.051)

0.012(0.015)
0.034(0.036)
0.056(0.061)

0.006(0.016)
0.033(0.058)
0.076(0.099)

)
0.095(0.106)
)
)

0.025(0.021
0.070(0.066)
0.111(0.137)

0.042(0.030)
0.125(0.095)
0.202(0.185)

0.008(0.005)
0.025(0.031)
0.047(0.055)

0.011(0.010)
0.028(0.030)
0.053(0.064)

0.009(0.014)
0.037(0.042)
0.069(0.087)

0.014(0.018)
0.068(0.085)
0.129(0.151)

0.020(0.016)
0.079(0.074)
0.164(0.139)

0.009(0.011)
0.035(0.033)
0.067(0.065)

0.015(0.015)
0.043(0.041)
0.067(0.066)

0.009(0.010)
0.034(0.033)
0.071(0.073)

0.018(0.013)
0.058(0.067)
0.103(0.132)

0.009(0.018)
0.054(0.069)
0.136(0.124)

100

0.014(0.012)
0.039(0.035)
0.068(0.067)

0.008(0.008)
0.027(0.038)
0.052(0.084)

0.012(0.014)
0.035(0.054)
0.067(0.098)

0.011(0.012)
0.058(0.058)
0.114(0.115)

0.008(0.012)
0.061(0.070)
0.127(0.153)

¥ Numbers in the brackets represent empirical test size when censoring

distribution is G(x) = e

1

e
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TABLE 2

Empirical power of the NBWUE(p) test against lognormal distribution

alternatives with parameters ¢ = 0 and ¢ >0 when the censoring

1 1

11

distributions are G(x) = eiTxand G(x) = eV?x.

o [pl @ n=10 n=20 n=40 n=60 n=100

0.70 [0.9595] | 0.05 | 0.672(0.576) 0.684(0.621) 0.690(0.673) 0.766(0.725) 0.882(0.800)

0.90 [0.5734] | 0.05 | 0.269(0.306) 0.360(0.469) 0.559(0.683) 0.680(0.775) 0.848(0.915)

1.20 [0.1018] | 0.05 | 0.039(0.117) 0.110(0.220) 0.209(0.342) 0.256(0.442) 0.387(0.601)

1.30 [0.0493] | 0.05 | 0.056(0.116) 0.131(0.236) 0.223(0.404) 0.289(0.533) 0.424(0.623)

1.50 [0.00971 | 0.05 | 0.070(0.168) 0.158(0.333) 0.316(0.534) 0.409(0.631) 0.577(0.825)

2.50 [0.0000] | 0.05 | 0.088(0.215) 0.231(0.430) 0.434(0.680) 0.587(0.828) 0.768(0.939)

¥ Numbers in the brackets represent empirical power when censoring
N
distribution is G(x) = e °
TABLE 3
Efficiency of Tn with respect to 7, when the censoring distribution
’ is exponential with mean -%—

P 1/100 1/20 1/10 1/4 1/3 1/2 2/3 3/4
0.10 0.985913 | 0929475 | 0.858948 | 0.651376 | 0.541810 | 0.344279 | 0.185546 | 0.122844
0.20 0.984289 | 0.921828 | 0.844846 | 0.625017 | 0.512957 | 0.317767 | 0.167467 | 0.109728
0.25 0.983367 | 0917516 | 0.836963 | 0.610636 | 0.497398 | 0.303738 | 0.157934 | 0.102886
0.50 0.988234 | 0.940740 | 0.880460 | 0.694957 | 0.590719 | 0.388714 | 0.212248 | 0.139811
0.70 0.994120 | 0.970530 | 0.941102 | 0.852794 | 0.804087 | 0.708310 | 0.615857 | 0.571180
0.75 0.993037 | 0.965094 | 0.929986 | 0.823894 | 0.764776 | 0.646853 | 0.528847 | 0.467908
0.90 0.988686 | 0.943217 | 0.886020 | 0.714065 | 0.619971 | 0.439828 | 0.275994 | 0.201305
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