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Minimum Mean Squared Error Accelerated Life Test Plans for
Exponential Lifetime Distribution
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Abstract

This paper considers model robust accelerated life test plans for estimating the log
mean or percentile of product life which is exponentially distributed. A linear
relationship between the log mean life and the stress is assumed as usual, while the
true relationship is quadratic. Optimum plans are then obtained by minimizing
asymptotic mean squared error of maximum likelihood estimator of the log mean life.

1. Introduction

Accelerated life tests (ALTs) provide timely information on the lifetime distribution of
products or materials. Units are tested at higher-than-usual levels of stress to induce early
failures. The level of stress at which units are tested is called the test stress. The life data
from the test stresses are then used in conjunction with a statistical model relating lifetime to
stress in order to estimate the lifetime distribution characteristics at a design stress. Such
testing saves time and cost over testing at the design stress. Further savings result from a
good test plan. Common plans use equally spaced test stresses and the same number of test
units allocated to each test stress. Such common plans are usually inefficient for estimating
the lifetime distribution characteristics at the design stress. In order to obtain more precise
estimate for the same number of test units and test time, optimum ALT plans have been
studied. Optimum ALT plans are determined by choosing the test stresses and the number of
test units at each test stress to satisfy specified optimality criterion. The usual optimality
criterion is to minimize asymptotic variance (AsVar) of maximum likelihood estimator (MLE)
of the mean or percentile of (log) lifetime at the design stress.

The literature on optimum ALT plans deals with a variety of lifetime distributions,
life-stress relationships, estimation methods and censoring types. Chernoff (1962) considers ML
estimation of the failure rate of an exponential distribution at the design stress. Assuming
that the failure rate is a quadratic function of the stress, he suggests optimum plans for both
Type I censored and complete data. Optimum plans for estimating the percentile of a normal
(or lognormal) or extreme value (or Weibull) distribution at the design stress have been
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studied by Barton (1991), Kielpinski and Nelson (1975), Meeker and Nelson (1975), Nelson and
Kielpinski (1976) and Nelson and Meeker (1978). Most of the previous works assume that the
life-stress relationship is linear. For given design stress and upper limit of the test stress,
they consider ALT plans with two test stresses and the high test stress set to the upper
limit. The low test stress and proportions of test units allocated to the high and low test
stresses are then determined by minimizing AsVar of MLE of the percentile of interest.

The life-stress relationship is often either very complicated or unknown. Even though the
linear relationship seems appropriate, it is a safe design strategy to take account of the
possibility that a quadratic or higher order model could provide better approximation. If the
sample ALT data indicate a curvilinear relationship, it might be tempting to fit a quadratic
model. In this context Nelson and Kielpinski (1976) suggest compromise plans with three test
stresses. Meeker (1984) compares optimum test plans and some compromise test plans with
respect to the ability to detect quadratic departure from the assumed linear relationship.
However, data analysts are usually reluctant to use such a quadratic model if the desired
inferences require much extrapolation. It is desirable to make ALT experiments and
corresponding data analysis as simple as possible. Therefore, if the life-stress relationship is
well approximated by the linear model and quadratic departure of small magnitude seems to
be involved in the linear model, data analysis may be performed under the linear model.
However, in order to protect ourselves from the model departure, we need ALT plans for the
linear model which are robust to the quadratic model departure. Such robust test plans may
be obtained by assuming that the true model is quadratic. This approach has been used in the
field of response surface designs. For example, see Box and Draper (1959) and Draper and
Guttman (1986). This paper considers optimum ALT plans for estimating the log mean life of
an exponential lifetime distribution at the design stress when there exists the quadratic model
departure. In this case an appropriate optimality criterion is to minimize asymptotic mean
squared error (AsMSE) of MLE obtained under the linear relationship. The low test stress
and the proportions of test units allocated to each test stress are then chosen so that AsMSE
is minimized. The test procedure, the model assumptions and the estimation method are
described in Section 2. Section 3 derives AsMSE of MLE of the log mean life and optimal
ALT plans.

2. The model

This section first describes the test procedure and the model for the lifetime as a funtion of
the stress x. We assume that the lifetime is exponentially distributed with mean life b and the

log mean life is approximately a linear function of the stress, i.e.

Inu(x)=vYo+v1x. (2.1)
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The popular inverse law and Arrhenius models are special cases of this simple linear
relationship. In order to estimate the characteristics of the lifetime distribution at the design

stress xa under the assumptions mentioned above, we consider the usual ALT plans with two
test stresses such that the high test stress xs is set to the specified upper limit of the test
stress, n; units randomly chosen from n units are tested at the low test stress x; and the
remaining nx units at xs, and each unit is tested until some prespecified censoning time 1 if it
does not fail sooner. Letn;=n;/n for i=h I. It is then necessary to determine the values of
x; and 7; optimally in some sense.

It is convenient to express the stress x as x=x4-&(xa—xn), where

_{xd=x)
(xq-xp)

E=8(x)=

is the standardized stress so that €4=&(x4)=0 and &x=&(xs)=1. Then model (2.1) is written

as
Inu(&)=Po+p:¢, (2.2)

where Bo=Yo+Yixs and Bi=-Y1(xs-xs). Suppose our design objective is the efficient
estimation of Bo, the log mean life at £&4. By differentiating the log likelihood with respect to
Bo and B1 and equating to zero, MLE of B¢ is obtained as

[/3\0=

& (ﬁ)— L In ﬁ‘) (2.3)

(1-¢n r (1-¢p rh

where r; is the number of units failed before n at &, Ti= Z;Tfj+(ni~r;)n and T is j-th
=

failure time at &; fori=h,l. This estimator is meaningful only when r;>0. Most of the
previous works determine x; and A; by minimizing AsVar of MLE of the parameter of interest.

However, this approach is applicable when model (2.2) is the true model. We now consider
the situation where model (2.2) seems to be appropriate but quadratic model departure is
concerned. It is then a reasonable design strategy to develop an ALT plan for model (2.2)
which protects us against the quadratic model departure. Such an ALT plan is the plan that

minimizes AsMSE of B\o obtained under the assumption that the true life-stress relationship is

Inp(E)=Po+P E+PoE2. (2.4)
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As MSE of Bo and optimum ALT plans will be derived in the following section.

3. Optimum ALT plans

Mendenhall and Lehman (1960) showed that

B )= - LB )1 (3.1)
nri Ing; Di ri
and
Ti\_ 2.2 1 1 4 1
Var( nri; )—n i Var( ri )+{ (lnq;)z pIZ }E( ri ), (3.2)

where p;i is the probability that a unit will fail by 1 at &; and gi=1-pi. They also suggested

simple approximation formula for the moments of 1/ri, which are

DR (ni-2)
E( ri )~ ni{(n,--l)p,-—l}
and
Var(—l')—‘w (ni-2){ni-(ni-pi-1}
ri )" ni((ni-Dpi- 1} {(ni-Dpi=2}

Inserting these approximate moments into (3.1) and (3.2) and assuming that n is sufficiently

large, asymptotic mean and variance of T;/(nr;) are given by (-lng:)™' and
{nnipi(-Ing)?*}!, resnectively. Utilizing the asymptotic normality property of MLEs,
asymptotic mean and variance of In{7T7/(nr))} are obtained as -In(-Ing:) and (nn;p) .
Since p;=1-exp{-1/exp(Bo+B1&;+B2E7)} under quadratic model (2.4), bias of Bo is -B2&; and
AsMSE of Bo is

1 i 1
(1-€)*  nmup (1-€)> n(l-m)pn -

ASMSE (Bo)=p5¢7 + (3.3)

We illustrate by an example the effect of quadratic model departure on AsMSE(Bo).
Consider the classical optimal ALT designs minimizing AsVar(By) for pa=001 and

prn=099. AsMSE( ﬁ\o) of the designs are depicted against B2 in Figure 1 for n=30, 50, 100.
Plots for other values of ps and ps show similar features. The effect of model departure on

AsMSE( ﬁB) is significant. It is therefore sensible to consider the designs minimizing
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AsMSE( o).
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Figure 1. AsSMSE(Bo) of the designs minimizing AsVar(Bo) for ps=0.01 and pr=0.99.

ALT plans attaining the minimum of (3.3) will be referred to as minimum mean squared
error (MMSE) ALT plans. Unfortunately we could not show the convexity of (3.3) due to the

complexity. However, we verified numerically via a two-dimensional search method that &/

and 7, the optimal values of € and n,, are given by the solution of equation

_on2 ]
0=2B3¢;+ ——=—>5 (1 &3 (T‘ 7—‘)
[2( + )- q""q’<1-c,){m<—lnqd>-m(-mq>—Bz<1—2¢,>}] (3.4)
vPl Vph pr.Dl h )

and

n= .@ , (3.5)
J.Dt & +Vpn
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where p! is the p; evaluated at ¢;. These equations are obtained by equating the derivatives of
(3.3) with respect to & and 7 to zero. The optimum plans depend on the model parameters
pa, pr and Bz which are usually unknown. In practice one must approximate the parameters
from experiences, similar data or a preliminary test. If n and preliminary estimates of pd, pa

and B2 are available, p; for arbitrary &, is computed as
pi=1-exp[-(-1ngd) W& ngn) ¥ exp (B2&i-B2ED)]

and then equation (3.4) is easily solved by standard numerical methods. The log 100pth
percentile, ¢, at the design stress is po+In{-In(1-p)}. Therefore t, is estimated by

fo+In{-In(1-p)}. Optimum plans for estimating Bo are also optimum for estimating tp at

the design stress.

Finally we consider the problem of determining the samle size n. Since the data analysis is

performed under the linear model, the (1-a)100% asymptotic confidence interval for Bo is
Bo+Z -am AsVar(ﬁ\o)}m, where Z (- is (1-¢/2)100th percentile of standard normal
distribution and AsVar(ﬁ\o) is the sum of second and third terms of the right hand side of
(3.3) evaluated under model (2.2). Therefore the desired accuracy of fo can be expressed by
specifying @ and the desired value of Z a-a | AsVar(B\o)}w, say w. Once pd, pr and Bz are
estimated and « is specified, we compute &/, 7/ and the corresponding Z a-am{ AsVar ( Bo)}

for different n. Then by comparing Z (1-w2 { ASVar(ﬁ\o)}m with w, we can determine a

sample size satisfying the specified accuracy.

4. Concluding remarks

This paper suggests MMSE ALT plans for the linear life-stress model that provide us with
protection against the quadratic model departure. In order to select a specific MMSE ALT

plan, preliminary estiamtes of pd, Pa and Bz are required. Since Inu(§) is generally a
decreasing function forO0<{<1, the specified value of Bz  should be between
In(-1lngs)-In(-Ings) and In{-Ings)-In(-Inga). A numerical study on the MMSE ALT

plan showed that the low test stress is closer to the design stress and more units are
allocated to the low test stress as compared with the classical ALT plan minimizing AsVar.
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Further studies are necessary for different lifetime distributions and other types of model
departure.
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