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Sampling Based Approach to Hierarchical
Bayesian Estimation of Reliability Functionl)

Younshik Chung?

Abstract

For the stress-strengh function, hierarchical Bayes estimations are considered under
squared error loss and entropy loss. In particular, the desired marginal postrior
densities are obtained via Gibbs sampler, an iterative Monte Carlo method, and
Normal approximation (by Delta method). A simulation is presented.

1. Introduction

In the statistical analysis of reliability theory, it is common to study the Rayleigh models.

The density probability function(pdf), conditional on a parameter 02, 1s given by
2

X
202 ), x>0, (11)

fixle ®)= oxg exp(-

Siddiqui(1962) mentioned the origin and properties of the Rayleigh distribution. Dyer and
Whisenand(1973) discussed the use of the Rayleigh distribution in electrovacuum devices and
communication engineering. Sinha and Howlander(1983) obtained a Bayes estimator of
Rayleigh parameter and the associated reliability function using squared error loss function
and Jeffreys’ noninformative prior. Chung(1995) considered the Bayesian estimation of scale
parameter of Rayleigh distribution under entropy loss funtion. In this paper, a prior distribution

is chosen to reflect prior knowledge about o”, Throughout this paper we assume that the

prior distribution of 0° is inverted gamma distribution with density

—— exp( - Bzz ), a2>0,a,8>0, (1.2)

2 _ 1

We shall denote this by 6°~IG(a,B).
A hierarchicai Dayesian approach to inference in this picUlcn was been impeded by the
dificulties in computing required marginal posterior distributions. Recent developments in
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computation techniques helps us to implement such models. In particular, Carlin et. al(1992)
have considered the hierarchical Bayesian analysis to the change-point problem using Gibbs
sampler. In section 2, we briefly review the Gibbs sampler which underlies our iterative
Monte Carlo method. In section 3, we formulate the hierarchical Bayesian stress-strength
model. Fianally, section 4 has the simulation.

2. Gibbs Sampler

The Gibbs sampler is a Markovian updating scheme enabling one to obtaining sampling
from full conditional distributions. It was developed formally by Geman and Geman(1984) in
the context of image restorations. More recently, Gelfand and Smith(1990) showed its
applicability to general parametric Bayesian Computations. Given a joint posterior density

fi81X), functional forms of k univariate full conditional densities (ie. the distributions of each
individual component of 8 conditional on specific values of the data x and all the other
components) can be readily written down, at least up to propotionality. Given x, for
convenience, the k univariate conditional densities are given by f81182...84), £8206183....84),
., fBklBy...08«-1). The Gibbs sanpling procedures are as follows : Choose starting point
8”852 ...84% and generate 61" from f8:182”...8{%). Next, generate 82" from

£6218,?,85 ...8.), and continuing this procedure to get 84" from ABx8:'",...8 (M), After

t such iteratives, we get (81(”,...,8;(“)). Under mild conditions, Geman and Geman(1984)

showed that for each j, 6;" 4, 8, ~ [0;] as 1t — o,

Independent parallel replications of the entire above process m times procedures m set of

) . . . .
parameter vectors, (0 1(,’ ,0 é,”B ;E?) for j=1,....,m. So we can estimate the marginal posterior

density f(8:1X) and the expectation El[g(8,)X] for any function g(8;),
FBIX) = = 328010 17,8 11,0 {140 4)
j=1

and
TS I R < ()
Elg(8i)]=—1 Zlg(Bk,).
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3. Hierarchical Bayesian formulation for stress-strengh model

A definition of reliability function can be given as follows. Let X and Y be two random
variables with cdf F(x) and G(y) respectively. Suppose that Y is the strength of a
component subject to a random stress X. Then the component fails if at any moment the
applied stress(or load) is greater than its strength or resistance. The reliability of the
component in this case is given by

R=Pr(X<Y) ,
which is called the stress-strength model. Johnson(1988) has the results based on the
sampling theory approach. Also, Eni and Geisser(1971), Basu and Ebrahimi(1991) have
considered the problem from Bayesian point of view.

Let Xy,....Xm and Yi...,Y, be independently and identically distributed as

f1(xl0:f)=Tx%exp(— 507 (3.1)
and
F¥108)= —= exp(- o), (3:2)

respectively. If X and Y are independently distributed with densities given by (3.1) and (3.2),
respectively, then it is easily shown

Q
N SR

N - SR | )
R=Pr(Y-X>0)=—m"r =57, A=~

(3.3)

Assume that the parameters 0f and 03 are identically distributed the prior distribution of o}
being 1G(a;B,), i=1,2 in (1.2). Let A=03/6f and v=05. Then the joini posterior density of

A, Vv given X, Y is

POILLT) = Kexp[-( tip,+2 )+( tofa+2 )_){..L]

281 2B v
1 n+az+l 1
() T (3.4)
where
. 1 LB1+2 VT taBa2 T
K= I'(m+a1)l'(n+ag)( 28, ) ( 282 )

Thus the marginal posterior density of A=03/0{ given X and Y is
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PO X, Y= g ¢ T Ly e (35)

__Ba(2+11B1) __T(plig)
where U=, (3rtay) o0 BPO=TT(, )

Theorem 3.1 Under square error loss, the Bayes estimate of R is given by

R=EIRXY] =[ oy pMXyid. (36)

Next consider the entropy distance of Rayleigh scale parameter as follows:

[3+]

"'ATGXD(’ 2) 2
L(o°a)=E|log OX 2X = - log Z -1
— exo(-5,)

This is called the entropy loss.

Theorem 3.2. Under the entropy loss, the Bayes estimate of R is given by

S L1 (T 1A o
Ri=El— | X Y] -fo A pOUX Yk (3.7)

From now, consider the hierarchical Bayesian analysis. lLet Xi,...,Xm and Yi,..-.Ym be
independently and identically distributed as filxlo}) and fA(vlo3) given in (3.1) and (3.2)
respectively. Assume that of, given o1 and Bi, and 0%, given d2 and B2, are independent
and distributed to IG(a,,B1) and IG(asB2) respectively. Furthermore, assume that Bi1 and B:

are independent and B; has density [(:(ai b)), i=1,2, where a1, dz, ,Gi, az b1 and b: are

m n
known. Let &= le? and 2= Zly? . Then the posterior density of 0%, 0%, Bi and B2 is
e

=

- e 1o tBir2 1

plo1,0501820 X, V) TR exp{ B = ]
1 7 _toBe+2 1

x (Gg)n.u:ol e)\p[ 282 0% ]

1 1 ! ro_ 1
X—ﬁmexp[-mj—ﬁaz¢1 exr)[ szz] . (38)



Bayesian Estimation of Reliability Function 47

Thus the joint posterior density of 0% and 0% is

2 2 1 9] t2
01,0 o T Tdg+ - -
p(01,05 X, Y) (07) PE1 g2y mrert exp[ 267 " 207 ]

a

2 2
x r(an( 016 ) r(az)( 92by )

07+by 0%+bs

az

But p(U'ﬂl,_Z) and p(o3 X Y) can not be expressed as the analytic form, and so we can

not calculate the equations (3.6) nd (3.7) analytically. Thus we will approximately obtain these
estimates using Gibbs sampler.

4. Simulation

The data in table 1 are drawn from the Rayleigh deviates with 63=2 and o =5 .

TABLE 1 Data generated from Rayleigh deviates :

X (0f=2, m=30) Y (05=5,n =20
2.43, 161, 0.47, 2.43, 1.63, 2.51 2.32, 1.78, 1.46, 0.63
0.90, 1.18, 1.19, 1.77, 0.78, 3.35 469, 5.04, 3.09, 431
257, 1.90, 1.78, 1.71, 0.80, 2.15 2.37, 1.55, 1.51, 2.62
3.90, 055, 4.33, 1.52, 1.78, 3.00 3.24, 2.36, 5.46, 1.25
1.39, 1.83, 1.84, 0.90, 0.89, 1.96 221, 7.94, 1.85, 2.95

For hierarchical Bayesian analysis, using Gibbs sampler, we need the univariate conditional
densities which are as fellows;

2B

pW%IO%,BLB&LX)=IG(m+c11,m), 4.1
2
p(o3lo}B1,B2, X, Y)=IG(n+a,, —72%%-2— ), (4.2)
2, 2 U%bl
p(Bilotoz,B2 X, ¥)=I1G(ay, oT+b. ), 4.3

and
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2,2 0§b2
p(Bziﬂl'ﬂz,Bl__&X)=IG(az,—0%—+—). (4.4)
Actually we are interested in the distributions of r= 03/0} and R=03/(0}+03) and their

expectations. So by Jacobian transformation method, the conditional density of r given of, By,

B2, X, Y is
2

\ _ o? __taBe+2 1
p(rioi,B1,B2XY) =K (rod) "ol exp[ 2B2 roff]
g1 L o [-__‘2“2+2 _1]
P D e SPT apet v

and the conditional density of R given 0%, By, Bz, X, Y is

R g "l [ tofa+2 I—R] o}
1 exp| -

2 _
P(R|01,|31,52,X,Y)—K( 1-r ° ) 282 Ro} (1-R)*®

ZB 2 -n-d;

where K= {T(n+a2)} X tsz+2)

Accordingly, the marginal density estimates of r

and R given X and Y are respectively
~ 03 1 X .
plr= o7 | X, ¥)=—r lle( rio%,B 1,82, X, Y) .

and

M
DRIXY)= —1%4— 3 PRI 1B 2, X, Y)

We choose vague second-stage priors for Bi1 and B2, letting gi1=a2=0 and bi1=bo=1.

Convergence of the algorithm was obtained after 50 iterations and again M =80 by checking
the stability of the quantiles of deviates.
Finally, we consider Normal approximation. Then take @1=1 and a2=1, and by empirical

Bayes method (ML-II prior, Berger 1985), we can choose

For a normal approximation based on the posterior mode, the mean vector is a solution of

d . . . . .
W log p(o %,0 %Idata)=0, and a measure of dispersion given by terms of Hessian matrix is
]
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d *log p(o },0 }ldata) !
do %do ¢

B=-

to be evaluated at the posterior mode. (6%,0 %)-(UA%, OA%) ~ N(0,B) , where

—~___ tiB1+2 —~  taBe+2
01 - 2(m+al)Bl "2.(522406, 0Gy°= _—_———2(]14’(12)32 _5.5312395
and

0.1568961 -85%10 Y
B =

-85+10 " 1657783

By Delta Method (f0},0%)=03/0%) , 03/0%- 0,2/ 0,2 ~ N(O, 0.6642248).
Let A/(1+AX)=R . Since

o ne(F) el (45 F ]

P(RIV,X,Y)oc(—%?—)"‘dx*lexp{_ tob2+2 1 I-R} 1

8, Vv R (1-R)*
e _lM
and so, p(RIX,Y)x M ‘le(Rlv;,X,Y).

Also by Delta method (f030%)=0%/(0c%+0%)),

of 9} N(0,0.7229)
0}+03 0%+03% o

and similarly
0%+0% 0%+ 0%
o L~ N(0,0.00644)
2 g2
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TABLE 2 : Approximate Moments

Normal approximation

Gibbs Sampler

Exact

E(r)(std.)

2.6952(0.8013)

2.86378(0.4468)

2.5

E(R)(std.)

0.7294(0.8502)

0.721(0.0611)

0.714

0.6

0.5

04

0.3

14!

(N}

[YRY]

ER)(std.) 1.371027(0.0830) 1.39(0.1183) 14
Gibbs /\(\}ibbs
!;‘_'. ..-.
- ‘c i:‘ -
- o
'\' Do
: \', ] . .
" i ,;
% : ;
'r .
k i
j ' _.\'orma.l \.
o "-»..\. ) '.\.
N N v,
/ .". . ‘:"-\ ‘Normal
-"‘ ;" \".';»\_ - ;;‘. . ...0
! L l. T I I .,I ¢ ~T~ ‘7- ‘] .I
E% ’5’-:’-3
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