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Admissible Estimdtion for Parameters in a Family
of Non-regular Densitiesl)

Byung Hwee Kim? and In Hong Chang?

Abstract

Consider an estimation problem under squared error loss in a family of non-regular
densities with both terminals of the support being decreasing functions of an
unknown parameter. Using Karlin's(1958) technique, sufficient conditions are given for
generalized Bayes estimators to be admissible for estimating an arbitrarily positive,
monotone parametric function and then treat some examples which illustrate our
results.

Keyword : Admissible Estimation, generalized Bayes, scale invariance, squared error
loss.

1. Introduction

Let X be a random variable whose density is given by

rix)e(8), a(8) < x<hb(B),0€(8,8)
f(x:8) =[ (1.1)

0 otherwise

with respect to Lebesgue measure where (8,8) is a nondegenerate interval in the real line

which may be an infinite interval, r(x) is a positive measurable function of x,
b(8)

c(8) = f(a) r(x)dx < © for all 8 € (8,8), and both a(8) and b(8) are functions of

8 such that a(8) < b(8) for all 8 € (8,6).

Karlin(1958) produced admissible estimators of ¢ “(8), @ > 0 under squared error loss in

cases when a(8) =8 and b(8) =06, or a(8) =6 and b(8) = 8. Later, these results were
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slightly extended to a > - —é— by Sharma(1975) and Singh(1971), and were further extended

by Sinha and Das Gupta(1984) and Kim(1994a). Recently, Kim(1994b) provided admissible
estimators of an arbitrarily positive, monotone parametric function h(8) under squared error
loss in the case when both a(8) and b(8) are monotone increasing function of 8.

In this paper we deal with the case when both a(8) and b(8) are monotone decreasing
functions of 8.

Let X1, Xz, ..., Xn be a random sample of size n (2 2) from the density (1.1). Consider
the problem of estimating an arbitrarily positive, monotone function A(8) under squared error

loss. Let Y1 and Y. be respectively the minimum and the maximum in the sample

X1, X2, ..., Xa. Then the joint density of Xy, X2, ..., X, is given by

wy

flx1, o, x238) = c(B8)u(y1-a(®))u(b(8)-ya) ifIlr(x.'),

where u(y)=1if y 20, and u(y)=0 otherwise. It follows from the Factorization Criterion
that Y1 and Y. are a pair of (minimal) sufficient statistics of 8. Moreover, the strict

convexity of the loss function guarantees from the viewpoint of risk that only nonrandomized
estimators based on Y1 and Y, need be considered (see Berger (1985), p40-41).

Consider the (possibly improper) prior of the form

|h'(B )lglh(B)]
c"(8)

n1,(8) = (1.2)

for almost all 8 € (_@,ﬁ) where g is a nonnegative function defined on the range of h. The

prior under consideration is assumed to be absolutely continuous with respect to Lebesgue
measure with the density (1.2).

In Section 2 we provide, using Karlin's(1958) technique, sufficient conditions for
admissibility of the (nonrandomized), generalized Bayes Estimator, say, 8,(Y1,Y%.), of A(B)

with respect to the prior (1.2). Finally, Section 3 contains some examples which illustrate our
results.

2. Admissibility of generalized Bayes estimators

Let X1, X2, ..., Xa be a random sample from the density {(1.1) where both a(8) and

b(8) are monotone decreasing functions of 8. Assume that there is a unique value M (2 8)
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of B8 such a(8)=>5b(8). Note that T may be +®,  Also, we assume that the parameter
space (8,8) is rich enough so that b(B)<a(B).

First, consider the problem of estimating a positive, monotone increasing function h(8) of
8 under squared error loss. Then, the generalized Bayes estimator 8, of h(8) with respect

to the prior (1.2) is given by

min {b"}(Y,),8)
f h(8) p(Y1,Y:8) 5,(8) dB

max {a”'(¥}),8)
min (674(Y,),B)

[ e PYLY0)7,(8) 0

ag(Yl ,Yn)

min (671(¥,),B)
f ' h(8) h'(8) glh(8))d8

max (a"('}',),g)

min {6"1(¥,), B}
[ h(8) glh(8)1d®
max {a }(Y1),8}

A(min {67V, 8})

uglu)du
himax {a}(¥)),8})

A(min (67 (Y), 1)
glu)du

h(max ta™(¥y),8))

min{h (6™ (Ya)),h(B)}
f uglu)du
max (h(a (Y1), h(8))

= min th(67(¥2) ), h(B ) 2.1
g(u)du

fmax(h(a"()’x)),h(ﬂ))

under certain integrability conditions imposed on g for 3, to be well-defined, where

p(y1,yn:0) is the joint density of Y1 and Y. given by

¥n 5
p(v1,va:8) = n(n-1)c "(8) [f rixydx] " “riv)riy,)
Y1
for a(8) < y1 < ya< b(8), 8<8<8.
The following theorem provides sufficient conditions for admissibility of 8¢ in (2.1).

Theorem 2.1 let g 2 0 defined on (0, ®) be such that

b b
Lg(u)du<0° and Lug(u)du<00 (2.2)



Admissible Estimation in Non-regular Densities 55

for every 0<a<b < ®. Then, the generalized Bayes estimator 8, of R(B) in (2.1) is

admissible if

min (A (b Xa (8)1),A(8)) ~df = ®

J‘§ h(8 )glh(B8)]1c™B)
b

[fm(r.(a"(b(e)»,h(g)) ug(u)du] (2.3)

h(8 )glh(B8)]1c%B)

min {h (b Na(8))),h(B))

7 dB

-3

U. . ug(u)du]
max tha (b (8))),h(8)}

for 8 <a,b<®.
Proof. Suppose that 9, is not admissible. Then there exists another estimator d’ such that

Eeld5’ (Y1.Ya)-h(8)12 < Ee(8,(Y1,Yn) -h(B)]°? (2.4)

for all 8 € (8,8) with strict inequality for at least one 6. In (2.4) the expectation operates
through the joint density p(y1,yn:8) of Y1 and Yn. Now, (2.4) implies

n -2
[ Ge-872c®) [[Frera]” rv)riyn) dyrdys
{a@ )<y, <y, < b(8))

<2 [ 05,-h®)1%0 -5 )c®) [[reoa]” rp0rva) dyidya

(a8 )< y1< y,< b(8))

(2.5)

for all 8 <8< 8, where 8,=38,(Y1,Ys) and &~ 8§’ (Y1,Y,). Let 8; and B2 be

such that 8 <8;<68;<8 and b(82) <a(B,). Here, without loss of generality, we can
assume b(82) < a(8;) since if b(82)2a(8;) and 81— 8, 82— 0, then b(6) 2a(8)
which contradicts our assumption b(8) < a(8) in the beginning of this section. Now,
integrating both sides of (2.5) over (8:,82) with respect to M,(8) in (1.2) and then applying
Fubini’s theorem yield, after some algebra,

n-2

8; ¥a
J‘ ‘f‘f (8g -5 >2c"(e>[j‘ r(x)dx] r(y1) r(ya) Mg (8) dy1dynd8
G

Y1
{a@ )< y1< ya< b(8))

-2

8. ¥n n
<2, ff (8¢~ n(8)]1 % (5, -8 )c"®) [ [ "rixydx ] r(y)riyn)ng(8) dyidynd
1 1
{a@ )<y < y.<bi(8))



5 Byung Hwee Kim and In Hong Chang

n-2

=9 ff [feb*(y.)[ﬁg—h(ﬂ)] c"(e)ng(e)de][f"'r(x)dx] 3z -8 )rivi)riys)dyidyn

1 Y1

{a@® )<y y, < b(8;))

n-2

+ ff [f:.l(y.)[sg‘h(ﬂ)]c"(B)ng(e)dﬁ][f:r(x)dx] (8,-8 ) riy1) rlyn)dy dyn

1

{a@ )< y;1 <y, < b(83))

(2.6)

By using the condition (2.2) and the fact that a Bayes estimator of a monotone function is
monotone, it can be shown after simple algebra that the absolute values of inner integrals in
the right-hand side of (2.6) have, respectively, the following upper bounds :

1

b yn)
Ue [8,-h(8)] c"(e)ng(e)de-1<A<el), a(8) <y1Syn<b(B:1) (27
nd

a
8,
f_l( U, -h(8)] c"<e>ng<e>de’<,4<ez>, a(8:) <vi<va<b(B:).  (28)
a 'y
min (h(b(a (8))),A(T)}
where A(8) = f . uglu)du
max (hCa™ (b (81))),h(8) )

Define
n-2

¥Ya
B(6) = ff (65—8’)2c"(8)[fy r(x)d\'] r(y1)r(ys) dyidyn

{aB@ )< y(<y,< b(8))

Then, from (2.6), (2.7), and (2.8), we have, using Cauchy-Schwartz Inequality

8
. B(8)7,(6) db

n-2

< 2 |B(8y) ff [fyy"r(x)dx] 18-8" | r(vi)r(va)dyidyn

1

(a8 )< y1<y. < b(8,))

{(a(B2)< y1< ya< b(83))

+ B(82) ff [f:"r(x)dx}n_glﬁg—ﬁ’ | r(y1) r(yn) dy1 dya }
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1
Ya n-2 2
< 2 B(8;) ff 18g-0 " Iz[fy r(x)dx] r(y1)r(ys)dyidyn
(a@ 1)< y1< y,< b(8;))
1
Vn n-2
ff [fy r(x)dx] r(y1)r(ya)dyidyn

(a8 )<y s ya< b(8,;))}

oy

+ 2B(82) { ff 18g-8" IZ[Lfnr(x)dx]rzr(yx)r(yn)dyldy,, } 2

{a(@2)< yi < ya< b(82))

{a@2)< y < yna< b(82))

L
. {ff [f:"r(x)dx]"-Zr(yl)r(y,,)dyldy,l } i

_L L 1
S 20n(n-1D1 7 {A®)BZ(8:)C™(8;)+ A(B2) B 2 (8,) C™(8;) )

1 1 1
=20ln(n-1)] Z[Bzwl)ngz(el) A8,) T
(A (B1)g{h(B))}c"(B;)] 2
1 1
+ B Z(82)1,7% (82) AB:) - |.
[h" (82) g{h(Bz))c"(B2)] * 29

Now, the analysis proceeds by examining the following two cases :

1 1
Case 1 : Jim B 2(8;)n,% (8;) A®,) — > 0.
9, ~8 [h (B:1)g{h(B:1)}c"(8;)] *
< + A8)
Case 2 : lilr_xf_B 2(8;)n,% (8;) L — = 0.

[h (81)g(h(B:1))c"(8,)] *?

It could be shown that Case 1 cannot occur while Case 2 entails B(8) =0 ae. which in
turn implies that 8 * (x) = 8,(x) ae.. The details omitted since they are similar to those of
Karlin(1958), Ralescu and Ralescu(1981), and Puri and Ralescu(1988).

Next, consider the problem of estimating a positive monotone decreasing function h(8) of
8 under squared error loss. Then the generalized Bayes estimator of A(8) with respect to
the prior (1.2) is given by
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min (h(a™(Y1)),h(8)}
f vglu)du

max (h{b (Y,)),h(B)}
J\min(h(a'l(Y:)),h(ﬂ))

84(Y1,Yn) = (2.10)

. g(u)du
max (A(5"1(Y,)),h(8))

assuming some integrability conditions imposed on g for 5, to be well-defined.

The following theorem gives sufficient conditions for admissibility of 3, in (210). The

proof is omitted because it is exactly the same as that of Theorem 2.1 with obvious simple
modifications.

Theorem 2.2 Let g 2 0 defined on (0, @) be such that

fg(u)du < © and fug(u)du < ® (2.11)

for every 0 <a,b < ®, Then the generalized Bayes estimator 5; of h(8) in (210) is

admissible if

8 Ih(8 )lglh(8)] c"(8)
fb min (A(a (5 (8))),h(8)) 7dl =
[f ) uglu)du ]
max (R (b (a(8))),h(B)} (2.12)
_ J“ lh'(8 )glh(B)] c"(B) 48
~ Ja min {h(a” (B (8))),A(8)} 2

- [f ug(u)du]

max (h(b(a (8))),h(8))}

for 8 <a,b<®.

Remark 2.1 The conditions (2.2) and (2.11) of above theorems are necessary for the
existence of generalized Bayes estimators in (2.1) and (2.10), respectively. Also, the conditions
(23) and (2.12) involve the divergence of a certain integral in the neighborhood of both

endpoints 8 and ® of the parameter space which guarantees the admissibility of generalized
Bayes estimators in (2.1) and (2.10), respectively.

3. Examples

In order to apply Theorem 2.1 and Theorem 2.2 to some examples, we need to choose
appropriate nonnegative functions g which satisfy the condition (2.2) of Theorem 2.1 and the

condition (2.11) of Theorem 2.2. In the following examples, we consider g(u) = u®" L u>0,
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- <g< ®© in Theorem 2.1 and g(u)=u'“'2, u>0, -© <a< o in Theorem 2.2.

Note that these g's satisfy conditions (2.2) and (2.11) of Theorems 2.1 and 2.2, respectively.

Example 3.1 Let X, X2, ..., X» be a random sample from the uniform distribution with a

density
1 for—B—%<x<-6+—é-,—m <B< @
f(x:8) =
0 otherwise.
In this case, r(x)=1, c(8)=1, a(8)=-8- =, b(8)= -8+ and 8= -® and

® = . First, note that b(B8) <a(8). Suppose it is desired to estimate h(8) = e® under

squared error loss which is monotone increasing. With g(u) = u®' u>0 -®<a< ®,
the prior (1.2) becomes Ma(8)=n,(0) = e -® <@ < o and the generalized Bayes

estimator (2.1) turns out to be

(-Yor S)aeD . -¥, - rarn

a+1 (Yor3u  ri-4x , @ -1,0
e -e
Yl"Yn"'l _ 1
8a(Y1,Yn) = 84(Y1,Yn) = P
e -

-Yn*% -Y:-—%‘
- e

Yi-Ya+1l ’

e

a=0.

Now, it can be easily shown that the condition (2.3) of Theorem 2.1 is satisfied if a = -2 .

Hence

Yoog  ney

3 2(Y1,Yn) =2 £ ¥ 1 eznd
e -e

is admissible for estimating et

Example 3.2 For the model governed by the density of Example 3.1 we want to estimate
-a-2

h(8)=e ® under squared error loss which is monotone decreasing. With g(u) = u

u>0, -© <a< o, the prior (1.2) becomes Ma(8) =1n,(0) = e(‘“m, -o <8< @ and
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the generalized Bayes estimator (2.10) turns out to be

) avie 1y ara- 5
a+ e -e
1 |, a#= -1,0
a (-a-1N¥1+ 5) (-a-1(Ya- 5)
e -e ,

8ll(},l,},n)=83(Y],,YP’|)= e - e

Yi-v,+1 » 2771
Yi-Ya+1 )
-Yu*z -Yx"%" ('1—0
e - e

A simple calculation shows that the condition (2.12) of Theorem 2.2 is satisfied if a =1,

g red

Hence ®1(Y1,Yn) =2 ee -zy,_l:e_zy,,.l is admissible for estimating e ®. Note that

81(Y1,Y,) is the  best scale invariant estimator of e ®  Uunder the loss

L(8,d)=e® (e ®-d)? Therefore, 8:1(Y1,Y,) is also admissible for estimating e® under
the loss L(0,d) since 3i1(Y1,Y.) is admissible for estimating e “® under squared error loss

and the weighting factor e 28 does not affect admissibility of an estimator.

Example 3.3 Let X1, X2, ..., X» be a random sample from the distribution with a density

8’ 1 1
B-1 for—e—2—<x<T,l<9<m

f(x:8) =

0 otherwise .

2 —
Here, rix)=1, c(8)= "EQ—T a(6)=#‘, b(B) = —é—, 8=1 and 6= o , Note that

b(8)=0<1=a(B). We want to estimate h(8)=0% Kk >8, under squared error loss
which is monotone increasing. With g(u)=u®"!, u>0, - <a< ®, the prior (1.2)
becomes Ma(B8) = (8) = kB (g -1)" 1<B< ®, and the generalized Bayes
estimator (2.1) is given by
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k
-5 (a+1)
-k{a+1) 2
a Ya -Y,

a+l

-ka _JZ;—“
Yn - Yl

—’z‘—lnyl—klny,.
Su(Yl,Yn)=53(Yl,Yn)= % , a=-1

YIT -Yf

_k
Y k-v, ?

—Iz'c—lnYl ~kInY.

a=0.

It can be shown after some calculations that the condition (2.3) of Theorem 2.1 is satisfied if

a< —'l—é-k-ik— Hence, 84(Y1,Yn) is admissible for estimating 0%, k > 0, if a < n_:;kik__

Example 34 Let X, X2, ..., Xa be as in Example 3.3. But , it is desired to estimate
h(8)=6% k<0, under squared error loss which is monotone decreasing. With
gu)=u’?% u>0, -© <a< o, the prior (2.1) becomes na(0) =ng(0)

= [k|@ %% 1"21 (g ~1)" 1< 8 < o, and the generalized Bayes estimator (2.10) is given by

kd

a+] Y, 2 -yl
a £ g , a#-1,0
le _Y:(d*l)
_k
Y: 2 -v,*
8ll(y'l,Yn)=83(Y'1,Yn)= k , a= -1
kinY, - > InY,
kInY, - %lnYl
% , a=0.

Y- Yl—i-

After lengthy calculations it can be shown that the condition (2.12) of Theorem 2.2 is satisfied

k-n
3k

. Hence, 8.(Y1,Y.) is admissible for estimating 8%, k< 0,if a< %

if a<
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