g% =23 A2 2%
19%6d 1249 pp. 63-73

Robust Bayes and Empirical Bayes Analysis
in Finite Population Sampling

Dal Ho Kim?

Abstract

We consider some robust Bayes estimators using ML-II priors as well as certain
empirical Bayes estimators in estimating the finite population mean. The proposed
estimators are compared with the sample mean and subjective Bayes estimators in
terms of "posterior robustness” and “procedure robustness”.

1. Introduction

Consider a finite population U with units labeled 1,2,...N. Let y: denote the value of a
single characteristic attached to the unit i. The vector y=(yy,..,y~)" is the unknown state of

nature, and is assumed to belong to 8=R". A subset s of (1 ,» N} is called a sample. Let
n(s) denote the number of elements belonging to s. The set of all possible samples is
denoted by S. A design is a function p on S such that p(s) € [0,1] for all s € S and
Zsp(s)=1 . Given y € 8 and  s={i1...in»n}  with 1Si1<..<ins SN, et

=

y(s)={y i..,¥ inw}. One of the main objectives in sample surveys is to draw inference about

y or some function (real or vector valued) Y(y) of y on the basis of s and y(s).

A unified and elegant formulation of Bayes estimation in finite population sampling was
given by Ericson(1969). Since then, there are many papers in the area of Bayes estimation in
finite population sampling. However, most of Bayesian literature in survey sampling deals with
subjective Bayesian analysis in that the inference procedure is based on a single completely
specified prior distribution. Such an approach has been frequently criticized on the ground that
it presumes an ability to completely and accurately quantify subjective information in terms of
a single prior distribution. We shall see in Section 2 that even in simple examples, failure to
specify accurately one or more of parameters of a prior distribution has a serious consequence
even from a Bayesian viewpoint, and protection should be taken against such phenomena.

A robust Bayesian viewpoint assumes only that subjective information can be quantified
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only in terms of a class T of possible distributions. Inference and decision should be

relatively insensitive to deviations as the prior distribition varies over I'. The robust Bayes
idea can be traced back to Good as early as in 1950 (see for example Good(1965)), and has
been popularized recently, notably by the stimulating article by Berger(1984). There is a
rapidly growing literature in the area of robust Bayesian analysis. Berger(1990) and
Wasserman(1992) provide reviews and discussion of the various issues and approaches.

The need for robust Bayesian analysis in survey sampling has been felt by some authors.
Godambe and Thompson(1971) adapted a framework whereby the prior information could only
be quantified up to a class I (C in their notation) of prior distributions. The model
assumption there played a very minimal role, the main idea being that model-based inference
statements could be replaced, in case of model-failure by design-based inference. In a later
study, Godambe(1982) considered the more common phenomenon of specific departures from
the assumed model. His contention there was that sampling designs could be a useful
companion of model-based inference precedures to generate "near-optimal” and “robust”
estimators. However, the basic model assumed in that paper considered yi .y~ to be

independent, and attention was confined only to design and model unbiased estimators. Royall
and Pfefferman(1982) also considered robustness of certain Bayes estimators. However, their
main concern is to find out conditions under which the Bayes estimators under an assumed
model remain the same under departures from the model.

The purpose of this article is to generate certain robust Bayes and empirical Bayes
estimators from a different perspective, and study their performance over a broad class of
prior distributions on the parameter space. Specifically, we develop some robust Bayes
estimators of the population mean employing ML-II priors (see Berger and Berliner(1986)).
Also, certain empirical Bayes estimators are derived. We compare the performance of these
estimators with the performance of the subjective Bayes and the classical (sample mean)
estimators using the criteria of "posterior robustness” and “procedure robustness”. For
simplicity of exposition, we have restricted ourselves to the estimation of the population mean,
although the methods are equally applicable for estimating other parameters of interest.

For simplicity, in the subsequent sections, only the case when n(s)#n = p(s)=0 is
considered. This amounts to considering only fixed samples of size n. Also, throughout the
loss is assumed to be squared error.

2. Main Results

We consider the model yi=0+¢; (i=1,.,N), where B0, £,,.,En are independently
distributed with 8 ~ N(i0,0%) and £1,..en are iid N(0T%. Write Mo=1%/0f,
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Bo=Mo/(Mo+n), §(s>=n‘1§y.-, and y(s)=ly;:i@s}, the suffixes in y(s ) being

arranged in ascending order. From Ericson(1969), it follows that the posterior distribution of
y(s) given s and y(s) is N((Boo+(1-Bo)y(s) 1 n-n, T I n-n+(Mo+n) ' J n-n)),

where 1, denotes a wu-component column vector with all elements equal to 1,

Ju=1, 1, g and I, denotes the identity matrix of order u. Then the Bayes estimator of
N
Y(y)=N'1§y.' is
8°(s,y(s)) = E[7(y) 1s,y(5)1=N [ny(s)+(N-n)(Bolo+(1-Bo)y(s))]. (2.1)

The classical estimator of Y(y) is 8%(s,y(s))=y(s) which is an unbiased estimator of ¥(y)
under any model which assume that the y:'s have a common mean.

To derive robust Bayes estimator of Y(y), we first introduce the notion of &-contaminated
priors. Denote by mno the N(uo,Og) distribution. The class T's» of prior distributions is given
by

={n:n=(1-e)no+eq, qEQ}, (2.2)
where 0<te<1 is given, and @ is the class of all distribution functions. We denote by
m(y |n) the marginal (predictive) density of y under the prior n. If n€l., we can write

m(y Im)=(1-¢) m(y Ino) + € m(y lg).
This leads to
miy(s) Im)=(1-¢) m(y(s) ing) + & m(y(s) lq).
Our objective is to choose the prior & which maximizes m(y(s) In) over .. This amount

to maximization of m{(y(s) |q) over g€ @. Noting that

n

miy(s) la)= [ (20 % expl- X (yi-0)*/(29)]a( ),

it follows that m(y(s) lq) is maximized with respect to the prior which is degenerate at
y(s). We shall denote this prior by 8 3(s» © being the dirac-delta function. The resulting
(estimated) prior is now given by
n=(1-g) mp + €83, (2.3)
The prior T is called ML-II prior by Good(1965), and Berger and Berliner(1986). Using the
prior T, y(s) is marginally distributed as
(1-€)N(o 1n, 12 In+0§ Jn)+EF
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where Fs has (improper) pdf

I
2

fly(s)) = (2m1%) % expl- ;ejsw.-—}(s))z/(zrz)] .

Also, the conditional distribution of y(s) given (s, y(s)) is given by
Ae(¥(s))N((Bo 1o+ (1-Bo)y(s)) 1 n-n, T2 I n-nt(Mo+n) ' J n-n))

(1M (VNN 1 n-n, T2 T w-n) 2.4)
where
Mur(¥(s)= {1+(&/(1-€))Bo ' exp(nBo( y(s)- o) /( 21%))} .
Hence, under the posterior distribution given in (2.4), the Bayes estimator of Y(y) is given by
8% (s,y(s)=N"'[ny(s)+ (N-n) (Aar(y(s)) (Boko*(1-Bo)y(s))

(12 (y()) y(s) 1. 25)
Note that for € close to zero, ie. when one is very confident about the N(Ho,03) prior for
8, since M(y(s))is close to 1, it follows that 8%% is very close to 8°. On the other hand,
when £ is close to 1, ie. there is very little confidence in the N(uo,o?)) prior, one gets

M(y(s)) very close to the sample mean y(s). Thus, the robust Bayes estimator serves as
a compromise between the subjective Bayes and the classical estimators.
Next, we compare the performances of 8° 3¢ and "% from the robustness perspective.

The main idea is that we want to examine whether these estimators perform satisfactorily
over a broad class of priors.

With this end, for a given prior &, denote by p(&,(s,y(s)),a) the posterior risk of an

estimator a(s,y(s)) of Y(y) ie. p(&(sy(s)a)=El{al(sy(s))-1(y) }is,y(s)]. The following
definition is taken from Berger (1984).

Definiton 2.1. An estimator ao(s,y(s)) is {-posterior robust with respect to T if for the

observed (s,y(s)),
POR r(ao) =sup ter 1p(&,(s,y(s))a0)-inf eer P(E (s,y(s)),a)l < L. 2.6)

We shall, henceforth, refer to the left hand side of (2.6) as the "posterior robustness index” of
the estimator ao(s,y(s)) of 1(y) under the class of priors T.

Note that POHr(ao) in a sense is the sensitivity index of the estimator ao of Y(y) as the
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prior varies over [. For any given {>0 , it is very clear that whether or not posterior
robustness exists will often depend on which (s,y(s)) is observed. This will be revealed in
the examples to follow.

5" we consider the class of N(u,0%)

To examine the posterior robustness of SO,SC and
priors, U (real) and 0%(>0). Write M=1%0% B=M/(M+n), where 1%(>0) is known.
Calculations similar to (2.1) now give the Bayes estimator of ¥(y) under the N(u,0%) prior

(to be denoted by &up) as

548 (5,y(s) =N ny(s)+(N-n)Bu+(1-B)y(s)]. @7
Then the following results hold.
p(& up,(5,y(s),8 " B)=NAN-nt (M+N)/(M+n); (2.8)

P& 1.5,(5,5(5)),8%-p(€ 15, (5,5(5)),8 %)
=(1- P2 Bo(k-uo)+(Bo- B)(y(s)-m]% (2.9)
P(E 5, (5,¥(5)),89)-p(& u5,(5,¥(s5)),84F)
=(1-p*BUy(s)-w% (2.10)
P(E5,(5,y(5)),8 **)-p(& 15,(s5,y(s)),8*7)
=(1- p*[Bohaur(y())(y(s)-Ho)- B(y(s) w1, (2.11)
where f=n/N is the sampling fraction.
From (29) - (2.11) it is very clear that if we consider the class T of all N(10% priors,
for each one of the estimators 8°3¢ and 3 ®®, the supremum (over i (real)) of the left hand

side of (2.9) - (2.11) becomes + , and all these estimators turn out to be non-robust. One
reason why this happens is that the N(1,0%) class of priors for all real U and 6%(>0) is
indeed too big to be practically useful. As a next step, we consider the smaller class
N(uo,oz) of priors, where the mean Wo is specified. This is not too unrealistic since, véry
often from prior experience, one can make a reasonable guess at the center of the distribution.

Note that when H=Ho , denoting &5 by &z and 8™F by 8%, (29) - (2.11) simplify to

p(&5,(s,y(s)),8%)-p(E5(s,y(s)),88)=(1-p%(Bo-B)%(y(s) -1o)% (212)
p(&5,(s,y(s)), 8% -p(Eg, (s,¥(s)),88) =(1- 2B y(s)-10)% (2.13)
p(&5,(s5,y(s)),8 B8 -p(&p,(5,y(s)),58)=(1- P2 (Borar(¥(s))-B) Ay (s)-no)2 (2.14)

Accordingly, from (2.12) - (2.14),
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POR(8% =(1-p%max(B3(1-Bo)*)(y(s)-no)* (2.15)
POR(BS) =(1-pUy(s)-no)% (2.16)
POR(5%8) = (1- p max (BA3(7(s)),(1-Bolar(y(s)) ) (y(s) - uo) 2 (2.17)

Thus, given any ¢ > 0 and 0 < f< 1, the posterior {-robustness of all these procedures
depends on the closeness of the sample mean to the prior mean HWo. Also, it follows from
(2.15) - (2.17) that both the subjective and robust Bayes estimators are more posterior robust
than the sample mean for the {N(116,6%),062>0} class of priors. A comparison between (2.15)

- (2.17) also reveals that the robust Bayes estimator arrived at by employing the ML-II prior
enjoys a greater degree of posterior robustness than the subjective Bayes estimator if

B (y(s)) > 1/2

We now turn to the empirical Bayes analysis. The empirical Bayes analysis is closely
related to the robust Bayes analysis in the sense that in the former analysis, the prior
distribution is assumed to belong to some class [ of distributions. Contrary to the robust
Bayes analysis where ¢ is typically taken to be very small in (2.2), in an empirical Bayes
analysis £ is taken as 1. This point is very clearly brought out in Berger and Berliner(1984).

In order to derive the empirical Bayes estimator, we consider the model (2.2) with &=1 |

but assume that @ is the class of {N(#,0%),0°>0} priors. For a typical member, say

N(1to,0%) in this class, the Bayes estimator of 7(y) is given in (2.7). We now estimate B as
follows.

Note that marginally y(s) is sufficient for 0% and y(s) ~ N(uo,7%nB). Hence,
n(y(s)-up)? ~ (1%/Bn%, and so Eln(y(s)-up)?1=1%B. Hence, since 1° is known, a
sensible estimator of B is 1%/(n(y(s)-#o)?). Since 0<B<1and this estimator can take
values bigger than 1 with positive probability, we estimate B by

B=min {1,1%/(n(y(s)-10)"}. (2.18)
The corresponding empirical Bayes estimator of Y(y) is
858(s,y(5)) = N"'[ny(s)+(N-n)( Buo+(1- B)y(s)]. (2.19)
Also,
P(&5,(5,¥(5)),8%)-p(&5,(5,%(s)),8)
=(1-p2(B-B) 4 (y(s)~-wo)’, (2.20)
so that
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POR(8%%) = (1- p?max (B%(1- BY)(3(s)-u0)®. (2.21)
Thus, the empirical Bayes estimator also has greater posterior robustness index than the
sample mean. The performance of 8% in comparison with 8° or 878 depends on the actual
(s,y(s)) observed.

Although the Bayesian thinks conditionally on (s,y(s)), and accordingly in terms of

posterior robustness, it is certainly possible to use the overall Bayes risk in defining a
suitable robustness criterion. This may not be totally unappealing even to a Bayesian at the

preexperimental stage when he perceives that y will be occurring according to a certain
marginal distribution. The overall performance of an estimator a(s,y(s)) of 7¥(y) when the
prior is ¢ is evaluated by r(&,a)=E[p({(s,y(s)),a)], the expectation being taken with
respect to the resulting marginal distribution of y(s). The following method of measuring the
robustness of a procedure is given in Berger(1984).

Definition 2.2. An estimator ao(s,y(s)) of ¥(y) is said to be {-procedure robust with
respect to T if
PR(ao) = sup ter |r(§,a0)- inf aerr(€,a)l < . (2.22)

We shall henceforth refer to PR{ao) as the "procedure robustness index” of ao.

C ¢ RB EB
8 5

Next we examine how the four estimators §°3 and compare according to the

PR criterion as given (2.22) when we consider the {N(110,0%),62>0)} class of priors. Using

the same notation &p as before for the N(1o,6%) prior, from (2.9) - (2.11), it follows that

r(€58%-r(E58%)=(1-p% Bo-B)1¥/(nB); 2.23)

r(€8,5%) -r(&55%)=(1-)*B1%n; (2.24)

r(&5,8%8)-r(€5,8%)=(1-p% E[(Bohmr(y(s))-B)2(y(s)-u0)?l; (2.25)

r(&8,8E8)-r(E5,5%)=(1-p% E[(B-B)%3(s)-n0)%. (2.26)
It is clear from (2.23) - (2.26) that

PR(8%8)=(1-p%sup o<s<1 EL(B-B)¥y(s)-10). (2.30)

From (2.27) and (2.28) it is clear that the subjective Bayes estimator lacks completely in
procedure robustness, while the sample mean is quite procedure robust. To examine the

procedure robustness of 872, we proceed as follows.
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Theorem 2.1. For every &>0, EL(BoM(y(s)-B)H3(s)-10)21= 0 BY?), where O.

denote the exact order.

Proof. Noting that n(y(s)-uo)?® ~ (1%/B)x} , it follows from (2.29) that
E [{BoAmr(v(s))-BY(y(s)-no)4

e Bo s T2 u y21
‘L (Trgen (BB B g ven (- 5) Sy @ (2.31)

where g=(g/(1-£))Bo"%. Next observe that
B% . 12 u u1/2—1
T+ gexp(Bow2B) )2 B 1 Tnp uexp (= 7) ez g py du

rhs of (231) < fow[ {

2 2 w 3/2-1
1° . _Bo 1 _.u -1 u
< [ 22 B exp ( 2 (1+BgB™)) ¥ (3/2) du

n +B]

2
TT[B"(B%/2g>(1+BOB‘1)'3”+B]

O(B"Y?), (2.32)
Again, writing g’ = max(g,1),

B3B! ~ 2By +B]
{2g" exp(Bw/2B)}®  gexp(-uBo/2B)

12 oo
rhs of (231) 2 —n-_L [

¥2-1

o u
exp(~=9") Z3r 3)

2
= TT[(Bo/Zg’ )2B™Y(1+2BoB™ ) ¥2-2Bog }(1+BoB ") 2+ B]

= O(BY). (2.33)
Combining (2.32) and (2.33) the result follows.

Thus, unlike the subjective Bayes estimator, the robust Bayes estimator using the ML-II
prior dose not suffer from lack of procedure robustness. For small B, the classical estimator

8¢ has a certain edge over 8”8 from the PR index. This is, however, natural to expect
since small B signifies small variance ratio 1%/6® which amounts to instability in the

assessment of the prior distribution of 6. It is not surprising that in such a situation, it is
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safer to use y(s) in estimating 7Y(y) if one is seriously concerned about long-run
performance of an estimator.
Next we study PR(8%%). First write MSB=n(y(s)-u)? with MSB ~ (1¥B)x} We

prove the theorem.

Theorem 2.2. E [(B-B)%(¥(s)-m)%=0(BY*™ where n (0<1<1/2)can be made arbitrarily

small.

Proof. First using (2.18) one gets,
E [(B-B)y(s)-w?=n"'E [(B-B)’MSB]

= n '[(1-B)*1*P(xi<B) + BY*/B)E [(1/1}-1D%F I o m). (2.34)
Now,
2 B u
P(11<B)—L exp(-uﬂ)Wdu
By _ 12 p12
SJ(; mdu = (2/m)*B"* (2.35)
Moreover,

E [QAE-D%F I pasp)

_ oo—l_ -_12‘. ul/Z‘l _ 5 oo _% u—l/Z
—fB ve T2V du 2P(X1>B)+L ue " Smr(1m) du

o n-1 o -u?2, 172
-1/2-% -u/2 U e 174
<B" [ e 27 (1/2) aus |, 2 (3/2)

<B "”"‘—5%2—&. (2.36)

Combining (2.34) - (2.36) the result follow.

BRB BEB

Theorem 2.1 and 2.2 clearly demonstrate the procedure robustness of and as

B — 0. The superior performance of the POR index of these estimators relative to the POR
index of 8¢ has already been established. On the other hand 5% which performs better than

8¢ on its POR index, fails miserably in its procedure robustness. This also shows that the

average long-term performance of a procedure can sometimes be highly misleading when used
as a yardstick for measuring its performance in a given situation.
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In practice, however, 7% is not usually known. In such a situation, one can conceive of an
inverse gamma prior for 1? independent of the prior for 8 to derive a Bayes estimator of
Y(y) (see Ericson(1969)). In a robust Bayes approach, if one assumes a mixture of a
normal-gamma prior and a ML-II prior for (8,7%), then the ML-II prior puts its entire mass

on the point (y(s), 2__:__:5( yi- ¥(s))%n) . In an empirical Bayes approach, one estimates 1°/B
once again by MSB=n(y(s)-uo)® , and 1% by MSW= ‘Zezs(yi—;(s))z/(n—l) . The latter can
be justified on the ground that ‘.gs(y.'—;(s))z ~ 1%%.1 so that E{MSWIl=1% Hence, an

estimator of B is given in this case by B.=min(l, MSW/MSB), and the corresponding

empirical Bayes estimator is obtained by substituting B. for B in (218). We have not

studied the robustness of these estimators.

3. An Example

This section concerns the analysis of real data set from Fortune magazine, May 1975 and
May 1976 to illustrate the methods suggested in Section 2. The data set consists of 331
comporations in US with 1975 gross sales, in billions, between one-half billion and ten billion
dollars. For the complete finite population, we find the population mean to be 1.7283 and the
population variance 2.2788. The population variance is assumed to be known for us. We select
10% simple random sample without replacement from this finite population. So the sample size

is n=33. We use gross sales in previous year as prior information to elicit the base prior 7.
The elicited prior =®o is the N(1.6614, 6.4351 x 10°%) distribution. Under this elicited prior To,
we obtain the subjective Bayes estimate. But we have some uncertainty in %o and the prior
information, so we choose £€=.1 in I'. and we get the robust Bayes estimate. Also we can
obtain easily the empirical Bayes estimate. A number of samples were tried and we have
reported our analysis for one sample. Table 3.1 provides the classical estimate SC, the

subjective estimate 50, the robust Bayes estimate 578 and the empirical Bayes estimate 558
Table 3.1 also provides the posterior robustness index for each estimate which is in a sense
the sensitivity index of the estimate as the prior varies over T.

From Table 3.1, we may find that the subjective Bayes estimate 8° is closest to ¥( y), but

SRB

not much good in the posterior robustness. The robust Bayes estimate and the empirical
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Bayes estimate 8% are well behaved in the sense that they are closer to Y(y) than at least

the classical estimate 5¢ and good in the posterior robustness index. Finally note that using

gross sales in previous year as auxiliary information the ratio estimate was 1.5040 and
lv(y)-8l = 0.2243.

Table 3.1. Estimates and Posterior Robustness Index

Estimate [Y(y) -8l POR

8¢ 2.1266 0.3983 0.174

5° 1.7435 0.0152 0.1467

5 kB 1.8689 0.1407 0.0664

5E8 1.9929 0.2646 0.0813
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