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An Algorithm for Hannan and Rissanen’s ARMA Modeling Method

Chul Eung Kim and Byoung Seon Choi"

Abstract

Hannan and Rissanen proposed an innovation regression method of ARMA
modeling, which is composed of three stages. Its second-stage is to choose orders of
the ARMA model using the BIC, which needs a lot of calculation to estimate several
regression models. We are going to present a simple and efficient algorithm for the
second stage using a special property of triangular Toeplitz matrices.

1. Introduction.

Consider the autoregressive moving-average (ARMA) model of orders p and g,

o(B)y: =08(B)v,, (L

where ¢(B)=-¢o-01B- -~ -9,B°, 6(B)=-80-6,B- «=0,B7 ¢0=00=-1, o, = 0, 045 0,
B is the backshift operator, and {v.} is a Gaussian white noise process with means 0 and

variances 0% ( >0). We assume that the model is stationary and invertible, ie., the equations

#(2)=0 and 8(z)=0 have all the roots outside the unit circle. Also we assume that the two

equations have no common root. This assumption is sometimes called coprimal. Since the
process is assumed to be stationary, the autocovariance function(ACVF) and the
autocorrelation function(ACRF) are defined as

o(N=covly:, ye+j), j=0,£1,£2 -,
p;=0()/0(0), j=0,%£1,%2, -,

When a T-realization {y1,,yr} of the ARMA model is given, the sample ACVF and the
sample ACRF are defined by

~

/6(.1')'—;/6(_]'):—%-‘- VeVi+j, j=071,"')

~

p;=T0()/8(0), j=0,+1,%2,
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Hannan and Rissanen (1982) proposed a three-stage ARMA modeling method by fitting the
current observation to past observations and estimated values of past innovations. We are
going to discriminate the estimates of the three stages by accents. For example, the

first-stage, the second-stage, and the third-stage estimates of M are denoted by ﬁ, ﬁ, and

fl, respectively.

1. The innovation v is calculated by fitting a long AR model. Let Nt be an upper

bound of the AR orders such that N7t increases as 7T does, but it does not
increase too quickly. It is sufficient to assume
N7 <(InT)% 0<g< o,

For n(sN7), fit the AR(n) model
Y= ?;;Btyt-ﬁv:

to the observations {yi,-,yr}. Let Bi, -, B» be the YW estimate of By, =, Bn.

Then, calculate the estimated innovations

- n
Ve = _gﬁlyt-l’ t=n+1y"')T,

where Bo=-1. It is recommended to choose the AR order n using the BIC or the

AIC. Due to its overparameterization tendency the AIC may be more practical.

2. Let K and [ be sufficiently large so that they are greater than the true orders
p and q, respectively. For each (ki) €{ (ki) k=0,+,K, i=0,~,I}, calculate the

ordinary least square estimates 8 i, =, Ox, Bi1, =, 8;s, minimizing
1 ZT: k i . 2
haye— -— - — + . _
T t=to+1(yt Jz:id’lwyt j ; il Ut 1) ,

where to=max(n+k,n+i). Denote its minimum by Bi,i. Choose 5 and ¢

minimizing

BICUkD)=In & &+ (+i) 121

among k=0,-,K and i=0,+,I. The estimated innovations in this stage are
defined by
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1’)\—:=y1=0,~/ - t <0,
Ur =y }fl O syver+ Igg qr Ve,  t=1-T

3. Using the estimates of the second stage as initial values, we apply maximum
likelihood techniques. One of them is as follows. Calculate {x:} and {z:} by

Xt = Z¢ =~0, t <0,

Xt = ‘264,\[)0-1*’)%, tzll.")T)
2= -ﬁ;ﬁ gr2e-1tve, t=1-T.
Regress v:+x:—z: on
Xt-1, ".)x!-;i\; —Zt-1, "';—Zt‘d\-

for t =t1+1, -, T, where ¢1=max( 1;, c} ), in order to obtain the refined estimates

~

o 51, ) Y B P B 77> The corresponding estimate of the white noise

variance is

where v is the re-estimated residuals.

The three-stage method is essentially due to Durbin (1960), who, however, gave no rule for
determining the long AR order n and took p and g given. Hannan and Kavalieris (1984)

recommended to repeat the second stage to obtain consistent estimates of the orders.
In the second stage it is necessary to calculate

{ Bk,l |k=0y .")Ky i=0$ ".)I} .
Since this stage needs a lot of calculation, Hannan and Rissanen proposed to calculate them

for only the case k =i using a modified Whittle algorithm. In Section 2, we present a

computationally efficient algorithm to calculate 0° ki for k=0, K and i=0, -, 1.

2. Algorithm

It is well-known that the AR parameters satisfy the extended Yule-Walker equations
Pi= 0P+ = +OpPjp, JEqrlgt2, . 2)
Since the ARMA( p,g) process is stationary, it can be represented by the MA{ @) model
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Ve = W(B)Uz,
where
W(B) = ¢"(B)B(B) = _Zow,-B".
<

More precisely,

ej’ j= O) ...!q)

Gol;+ Q-1+ - + QMo =
0, J=gq+l,q+2,,

where ©¢; is assumed to be 0 for Jj=p+l,p+2, . It is known (Choi [I986]) that the
parameters and the ACVF satisfy the relations

0o0() +010(j-1)+ = +¢;0(j-p) -
= (U!oej+lU16;+1f w4 i8g)0%  j=0, - .q.

Since
cov(vyyej) =0, j=0,1, -,

the first-stage estimates of 0° and W j are

vz _1_ T .

g = T Z[: Ue

Nd 1 1 L A .

Y, = o2 (th: Uthw’), J=12,.

Our purpose is to obtain 5%,,- using these estimates.

To obtain AR coefficients for several pairs of the orders, it is necessary to generalize the
extended Yule-Walker equations. For k=1,2, and i(=0,1,, we define a k-dimensional
Toeplitz matrix and two vectors as

Pi Pi-1 = Pi-kn1
B(ki) = pi:l Qi piik+2 ’

Bi-k-1 Pivk-2 = pi

p (ki) = (Piry, =, Pick)’,

Y (ki) = (Pi-k,pi-1)"

Also, we denote x = (xn, - ,x1)’ for any vector x = (x1,,x,)". If B(k,i) is nonsingular,

then we let
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o (ki) = B (ki) p(ki),

R(k,i) = B (ki) ¥ (ki)

8 (ki) = pivke1- O (kD) P (K,D),
N (ki) = pi-k-1- Bk, ¥ (ki)

pi- ® (kD' p (kD).

i

A (kD)

For k=0 and =01, welet

8(0,1) = pi.1,
n0,i) = pi-1,
MO0 = pi.

We denote the jth elements of ¢ (k,i) and % {k,i) by dJ;E,iJ') and nxﬁ‘,) for j=1,-,k. Also, let
040 = mid = -1 for each (k,i).
For k=12~ and i=01~, we can calculate {041 ~ 0%} using a simplified

Trench-Zohar algorithm as follows.
Initial values for recursion:

@

off = UL

D’

>
o o

=

(
i) = (0,1

(0,i) ’
ML) = M0,)(1-00n (.

>
<o

For k =1,2,,

8(k,i) = Pioke1 =~ DAL Dok — = -0k pia,

NK,i) = Pi-k-1~ TR P ik = _nli,il«): Pi-1,
(i _ _BkD

Prer kel = ki)

O 0. A )
A P

Mk+1,0) = Mk D{1-04 141 mek 1)

For j=1, -k,
(0 _ L) (i) (i)
ki1 = Oy ~ Ok Lk 1Mk +1-J,

) 0y _ - (i)
MLy = Milf = Rk 10k o1+
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We are going to renovate it so that it is not necessary to calculate the dummy sequence
(Y. If i=0, then
n(k,0) = ¢(k0).
If i=12 , then the definition of & (k,i-1) implies

N Yo : , :
/:1(_ W) P (k,l_l_k+1) P (k,l_l_k) .
If we let
(i-1)
(N ¢k,k'f
Miej = = — -
k,j ¢l£,’k1) ’

then the last equation is equivalent to
B(k,i) ®(k,i) = r(ki) .
If we assume the nonsingularity of B(k,i), then

(i-1)
(i) Drk-j

Tk = = g J=1mk

In summary we obtain the following algorithm for the AR coefficients. As defined in
Trench (1983), a matrix is called strongly nonsingular if its principle submatrices are
nonsingular.

Algorithm 1. An Algorithm fpr the AR parameters
Assume that B(k,i) is strongly nonsingular, then we can calculate the AR coefficients as
follows.

For i =0, use the Levinson-Durbin Algorithm to calculate

(047 1k=1,2,, j=1,-k}.

For i =12 -,
For k=0, let
A (0,0) = pi,
off = Lok
For k=12, -,

8(k,i) = pivkr1= 08 pis - ~0xhpi1,
(1)
Mk,i) = Mk—l,i){l—%},
Or

(i) Olki)

Gr1ke1 = X(k:;') .
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For j=12,k,
(i) CING 051
Orv1j = Okj + Ok 11 —(_rmk’,'lk-l . O

For a finite sample case, the estimate of B{k,i) is strongly nonsingular with probability 1.
Thus, the strong nonsingularity assumption is not so crucial in practical analyses. When a
T-realization {y1,yr} is given, we obtain the second-stage estimates {043, -, ®i2} by
replacing the ACRF with the sample ACRF in Algorithm 1.

Let 2(i+1,k+1;0), S(i+Lk+1;0), and ¥ be (i+1)x(k+1) matrices, whose (r,s)
elements are

(Z(i+1,k+1;0))rs = 0(r-s),

( %(l"‘l,k*‘lyO) )r,s = 8 (r-s) ,

0, r<s,
( ¥gidrs = [
Yr-s, otherwise,
respectively. Also let ¥; be a (i+1) x(i+1) matrix whose (r,s) element is
0, r>s,
( ¥; )r,s = [
Vs--, otherwise.

If the underlying process is from the ARMAC(k,i) model, then Equation (2) becomes
S(I+1L,K+1;0) 0. (ki) = 0% ¥; 0. (ki)

where
0. (ki) = (048,081, 040 °.
Let
co=0,c1 =01 ,~,ci =0Y;, Ci=0¥;, Cgi = 0¥;.
Then

CiCri ¢« (ki) = Z(i+1,k+1,0) ¢. (k).

It has been shown (Choi [1986]) that the inverse matrix of an upper triangular Toeplitz matrix
is also upper triangular Toeplitz. Using this property we can efficiently calculate the inverse

matrix of Ci. If we let
Di= Ci',

- L
dO_ CO,

dj= - (cydo+ = +erdiy), j=12,,
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then the (r,s) element of D; is

0, r>s,
(Di)r,s =
ds-r, otherwise.

It should be noted that each element of D; does not depend on i{. We can calculate the

second-stage estimate ak,i by
Cii 0+ (ki) = D 3(i+1,k+1,0) 8. (ki) .
In the second-stage of the Hannan and Rissanen algorithm it is sufficient to estimate 0, or
equivalently co. It can be done by considering only the first element of the vector equation,
Le.,
ik

~ N ~ ~ ')
Oki = - Z dr O(r_S)(DIE,Is-

r=0s5=0

3. Comments

The algorithm presented in the previous section is simpler than the modified Whittle
algorithm, and it makes applications of Hannan and Rissanen’s method computationally easier.
It may be worth mentioning that the MA coefficients of the ARMA model can be obtained
also through the Newton-Raphson algorithm.

Algorithm 2. A Newton-Raphson algorithm

For j=0,-,q, let T; and S; be (g+1)x(p+1) matrices, whose (r,s) elements are

Cjer-ss, 1S s< j+r, 1 < r < g-j+l,
: (Tj)r,s = {
0, otherwise,
Cj-rvs, 1 Sr<g+l, max{l,r-j} <s < qg-j+1,
(Sj)r,s = [
0, otherwise,

respectively. Also, let

t
Cq = (CO,CI,"',CQ) )
Uj =T+ S;

W = (Uo ¢«, ~,Uq 0.).
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Then the Newton-Raphson solution of
CqCpq 0:(pg) = Z(g+1,p+1,0) ¢.(p,q)

is obtained by the recursive equation

cq V= % ce P HW ") (g+1,p+1:0) 6. (pq),

where the superscript (n) means the value at the nth iteration. [

Wilson (1969) has derived the Newton-Raphson algorithm for a pure MA process which is a
special case of Algorithm 2. It is worth mentioning that Algorithm 2 shows Equation (4) of
Wilson's paper can be simplified as

AR %9 GNP AORES S
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