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Bayesian Estimation via the Griddy Gibbs Sampling
for the Laplacian Autoregressive Time Series Model

Young Sook Son!) and Sinsup Cho?

Abstract

This paper deals with the Bayesian estimation for the NLAR(1) model with
Laplacian marginals. Assuming the independent uniform priors for two parameters of
the NLAR(1) model, the griddy Gibbs sampler by Ritter and Tanner(1992) is used to
obtain the Bayesian estimates. Random numbers generated from the uniform priors
are used as the grids for each parameter. Some simulations are conducted and
compared with the maximum likelihood estimation resuit.

1. Introduction

The New Laplacian AutoRegressive(NLAR) model introduced by Dewald and Lewis(1985)
can be applied to marginally double-exponentially distributed time series data with a larger
kurtosis or longer tails than Gaussian data. Son and Cho(1988) discussed the properties and
the forecasting procedures of the NLAR process. Karlsen and Tjdstheim(1988) obtained the
conditional least square(CLS) estimates which are consistent and asymptotically normal for all
four parameters of the NLAR(2) model. Also, Son and Cho(1995) discussed the maximum
likelihood(ML) estimation for the NLAR(1) and the NLAR(2) models. The results of a
simulation study for the ML estimates of the NLAR(1) and the NLAR(2) model show that as
Karlsen and Tj¢stheim(1988) had pointed out for the CLS estimates, if |a;B;l, i=1,2, in the

NLAR(2) and |aB| in the NLAR(1) are smaller than 0.1 the ML estimates are also virtually
useless because of large bias and mean square error(MSE). But, for moderate sample size in
the model with |a;B;| much larger than 0.1 the ML estimates obtained by using the CLS
estimates as initial estimates in the optimization program are better than the CLS estimates in
the sense of bias and MSE.

In this paper, we consider the Bayesian estimation of the NLAR(1) model via the Griddy
Gibbs sampling technique. Major obstacles to a practical implementation of Bayesian inference
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are mainly due to the difficulties in the integration required to obtain posterior densities. In
case of Bayesian models with a non-conjugate prior analytical or numerical approximations
are often used, but they still involve computational difficulties or require the derivatives of
posterior density or likelihood function. Since the likelihood function of the NLAR(1) model
contains the absolute terms and is nonlinear it is very difficult to derive the posterior
probability density for each parameter. We can avoid these difficulties by using the Gibbs
sampling technique, in which the posterior densities can be obtained by a Monte Carlo method
without the direct integration.

Since the Gibbs sampler has been introduced in the Bayesian restoration problem of images
by Geman and Geman(1984), this Monte Carlo method has been successfully applied to
Bayesian inferences and other important theoretical and practical issues in many statistical
areas. In the implementation of Gibbs sampling, we need to know the maximum or the upper
bound of the posterior density or restrictions on the density, for example, the log concavity.
But, the griddy Gibbs sampling technique by Ritter and Tanner(1992) based on a linear
approximation of the inverse cumulative distribution function(c.df) requires only a
proportionality constant of the posterior density. We can obtain the Bayesian estimates for the
NLAR(1) model by applying the griddy Gibbs sampler without knowing the mode or
log-concavity of the posterior density.

This paper is constructed as follows. Section 2 describes the NLAR(1) model, and
formulates its likelihood function and posterior densities. Section 3 briefly reviews the Gibb
sampling and the griddy Gibbs sampling. Secton 4 shows the results of Bayesian estimation
via the griddy Gibbs sampling for four models of NLAR(1).

2. The NLAR(1) model and Bayesian formulation

Let { X:} be a stationary sequence of random variables whose marginal distribution is

standard Laplacian. Then the NLAR(1) model is constructed as follows : for ¢=0, *1,+2,...,

- BX:1 wp. o«
X { 0 wp. 1-a } toE @D

where

£ - { L wp. 1-p 2.2)

BIVI-aL:  w.p. p=aB®/{1-(1-a)B?},
0<a < 1,0 <IBl <1, and {L: is a sequence of iid. standard Laplacian variables.

Let x= (x1, x2,--, xn) denote the observed data of size n of { X.}. Then, from Son
and Cho(1995), the likelihood function is given by
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11

n
t=21

2.2
HaB)=fx lap)=—2e ™! 21 2qaipid; expl-lx; -Bixe-i /dj),  (23)

where  d1=1-q, az=q, B1=B, B2=0, p2=p=ap?/{1-(1-a)B?), p1=1-p, di=1 and
d2=1Bl¥v1-a.

Assuming the independent uniform priors, a~U(01) and B~U(-1,1) , where B#0 , the
posterior densities for ¢ and B are

fawale Bx )= 5 c1(B,x) - [(aB) (2.4)

and

foaa(B lax )= ca(a,x) + Ka,B), (25)

where c1(B,x) and c2(q,x) are normalizing constants independent of o and B,

respectively.

3. The Gibbs sampling and the griddy Gibbs sampling

The Gibbs sampling is a Markovian updating scheme to obtain samples from a joint
distribution f61,82,...,6¢) via sampling iterated from k available complete(full) conditional

distributions,

j(ell 621831"‘7ek)
1(82' 61)8:3)“‘)8,() (3.1)

fBil 81,82,...,8k-1)

Given an arbitrary set of initial values, ( 820, ---,Bk» ), the Gibbs sampling algorithm to
obtain a sample (61,82, ...8¢ ) from f(6,,02 ..,8 ) repeats the following loop by setting
=0 in the beginning :

(@) draw Bii+» from 811 82,030,840, -,0k0).

(b) draw 82¢;+1) from A8z 01¢+1),83(0,04(, -,0k0) ).

(k) draw Bx(i»» from fBx{ 01¢+1,820+1),-,8k-16+1)).
After repeating the above loop [ times, the sample value (8 1,0 2, ---,0 x(» ) is obtained.
Geman and Geman(1984) showed that under mild conditions
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(8 un, 8 20, -, 8 k1)) 4, (0,,82...,0k) (3.2)
and hence for each s,

Bs _d’es~ﬂes), (3.3)

as | — ©, Therefore, for large [ 05(l) can be regarded as an observation drawn from its
marginal distribution, f8s). After this entire process is performed until the [/-th repetition

with G independent parallel runs, G simulated samples (81,0 36,..848), g = 1, 2, ...G,
are obtained, which can be used to estimate the marginal density A8s), for any s. The

marginal density is then estimated as follows

G
K8)= 5 210081 0.6, r7s). (34)

From the above process for Gibbs sampling we can know that the Gibbs sampling involves
generating random variates from all complete conditional densities of (3.1). Thus the
implementation of Gibbs sampling is straightforward under the assumption of conjugate priors
or the form of standard distributions. In other cases, more sophisticated random variate
generating methods such as the rejection method(Ross, 1993) or the generalized ratio of
uniforms methods(Wakefield, et al, 1994) can be used to generate random variates from
non—-normalized densities. But these methods require locating the mode of non-normalized
density. The adaptive rejection sampling algorithm(Gilks and Wild, 1992) does not require the
mode of the density but the log-concavity of the density. Since the griddy Gibbs sampling by
Ritter and Tanner(1992) requires neither the mode of the non-normalized density nor the
log-cancavity, this method is applicable if only the non-normalized density can be calculated.

Ritter and Tanner(1992) considered the following griddy Gibbs sampling algorithm :

Step 1. Calculate p(8;181,082,....68:-1,8i.1,-.-,8k) at  8i=01,02,....0m,
to obtain wi1,w2,.-,Wm.

Step 2. Use Wi1,W2,Wm to obtain an approximation to the inverse

cdf. of p(8;| 81,82,...,8i-1,641,-.-,84).

Step 3. Draw an uniform (0, 1) random variate and transform the observation via
the approximate inverse c.df.

Usual simple approximate c.d.f’'s are based on a discrete distribution for ¢1,$2, .., ¢m with

m
probabilities p(d;)=w; /Z;wj or an uniform distribution on the interval [ai, ais1 ],
£
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i=12,...m with p@))=w; /{ 2;wi(aj1 -a;)}, where ¢;€[ai, ais1 ]. Though more
=1

sophisticated approximations to the c.d.f. can be used besides the above simple approximations,
we simply use the latter method in the griddy Gibbs sampling applied to the NLAR(1) model
in the next section.

4. Simulation study

In this section, we illustrate how the Bayesian estimates obtained via the griddy Gibbs
sampling cope with the NLAR(1) model of (2.1). We consider four NLAR(1) models with
(a,B) = (0.1, -0.2), (0.3, 0.4), (0.5 -06), and (0.9, 0.8) dealt with in the maximumn likelihood

estimation of Son and Cho(1995). The samples of size n = 100 are generated for each model.

Given the observations x=(xi1,x2,--,x100) for each model, our strategy for the griddy Gibbs
sampling is as follows : we use the CLS estimate Bas as an initial value By of B. Now,

let's begin by letting [=0 .

@ A procedure for drawing o from fa IB,x ) of (24).

Step 1. Generate m uniform (0, 1) random variates, ui,u2,-.,Um.
Step 2. Compute w;=fupx(u; |Bw, X), j=12,...m

Step 3. Obtain a piecewise linear approximate c.d.f. Fa(y) using wi,wz2,-,wWm |,

where
0 , ¥y <ay ,
Fo(y)={ ci+diy ai Sy <aja, i=12,...m (4.1)
1 Yy 2 Am-+1.
i-1
gw,-(a,-q -a;)-wia;
Here, ci-——— , (4.2)
j;wj(aﬁl -aj)
di = : (43)

m
Ziwj(aﬁl -aj)
£

and



120 Young Sook Son and Sinsup Cho

a1=0
a;= _é—(uj'l +uj), j=2’...,m (4.4)

Am+1~ 1.

We note that w; of ¢ and di can be replaced by the likelihood function value
I(uj, Bw), which implies that we need to know at least the proportionality
constant of the postorior density.

Step 4. Draw an uniform (0, 1) random variate u" and transform a simulated

observation d (.1 via the approximate inverse c.d.f, ie.,
1, e u -ci . . .
a([q):Fal(U )=—_d . , If ai Su <a,~+1, 1=1,2,...,m. (45)
i

@ A procedure for drawing 8 from AfB la,x ) of (25).

Step 5. Generate m uniform random variates v1,U2,-Um , where v;~U(-1,1) ,
v;70 .

Step 6. Compute w;=1I{ad 1), vj), j=1.2,....m.

Step 7. Obtain a piecewise linear approximate c.d.f Fs(y) as same as the equations
(41)-(44) of Step 3 after setting u;=vj, w;=I(ayn,v;), a1=-1, and
am-1=1.

Step 8 Draw an uniform (0, 1) random variate u” and transform a simulated

observation,

T __u‘_—g_
Bw=Fp (u )= a;

LW ai S U <aien, i21,2,0,m,

For our analysis we conducted the above entire process through /=100 iterations. At each
iteration of the griddy Gibbs sampling algorithm G=2000 independent parallel samples are
generated for each model. Thus the resulting data from the each posterior density are G=2000
sampled pairs drawn on the [=100th iteration. The algorithm has been implemented in
FORTRAN on a PC/pentium computer. Uniform (0, 1) random variates are generated using
PC/IMSL subrutine, RNUN. On convergence, Figure 1 displays the plots of sample quartiles
for ¢ and B sampled on each iteration. The dispersions of the posterior densities become

samaller as |aBl approches 1. Also sample quartiles of the model with a=0.1, $=-02
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(laBl=0.02) still show cyclical fluctuations even on considerably large iteration. This result
can be explained by the fact that the NLAR(1) process with [aB| =0 shows the behaviors of

Laplacian random process. On the other hand, sample quratiles with @=09, B=0.8 (laB|=0.72)
converge on the first iteration. These features are consistent with the results of the CLS and
ML esmation. For each model, we calculated the median, mode, mean, standard deviation, the
5th and 9th percentile of simulated samples from each posterior density for @ and B. These
results are listed in Table 1. The means and standard deviations of the CLS and the ML
estimates with 100 replications are also shown in Table 1.

In case of assuming uniform priors, the maximization of the posterior density is equivalent
to the maximization of the likelihood function of one parameter with others fixed. Thus, we
adopt the modes of posterior densities as the estimates of parameters. The modes of posterior
densities are estimated from the probability histograms of each posterior density in Figure 2
which was ploted using PROC GCHART of SAS/GRAPH. From the results of Table 1, we
know that the estimates by the griddy Gibbs sampling are well incorporated. Especially, the
griddy Gibbs sampling in case of small |aB | value gives better estimates than the CLS and

the ML method.

Table 1.
Result of a simulation study. Standard deviation(sd.) is in parentheses.

Characteristics of posterior density

model median mode mean(sd.) 90% interval CLS(sd.) ML(sd.)

a =01 0.293 0.20 0.339(0.217) [0.063, 0.8031 0.657(0.413) 0.643(0.356)
B =-02 0.010 -0.10 0.013(0.395) [-0.649, 0.629] -0.073(0.481) -0.018(0.396)
a =03 0.341 0.25 0.371(0.208) [0.082, 0.760] 0.603(0.381) 0.508(0.299)
B =04 0.333 0.40 0.286(0.309) [-0.295, 0.731] 0.294(0.462) 0.334(0.424)
a =05 0.535 0.55 0.531(0.170) [0.243, 0.814] 0.657(0.292) 0.559(0.175)
B
a
B

= -06 -0491 -0.56 -0.468(0.192) [-0.743, -0.118] -0.559(0.248) -0.604(0.179)
=09 0.830 0.87 0.821(0.082) [0.674, 09391 0.867(0.141) 0.891(0.044)
=08 0.775 0.78 0.746(0.153) [0.451, 0944] 0.825(0.097) 0.806(0.054)
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NLAR() model with ¢=0.1 and A=-0.2
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Figure 1. Sample quartiles(vertical axis) vs. iteration(horizontal axis). Sample size n=100,

m=10 grids, /=100 iterations, G =2000 independent samples.
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5. Discussion and futher sudy

We have used the griddy Gibbs sampling to obtain Bayesian estimates for the NLAR(1)
model. Under the uniform priors assumption, it does not require any oprimization theory. It
suffices to have the likelihood function. But, we can not but point out that this griddy Gibbs
sampling is very computationally intensive and takes a lot of time. For example, it took 1.8
seconds on a PC/pentium computer to obtain the ML estimates for four NLAR(1) models, but
on the other hand 13 hours to obtain Bayesian estimates by the griddy Gibbs sampling with
m=10, /=100, G=2000. There are little or no difficulties in applying the griddy Gibbs
sampling if the computer can intensively be used and enough time can be given.

The Bayesian estimation via the griddy Gibbs sampling considered in this paper can be
applied to the New Exponential AutoRegressive(NEAR) model with exponential marginals
which has a difficulty of discontinuity in its likelithood function. Also, we expect that the
Bayesian estimation via the griddy Gibbs sampling be well performed irrespective of the
troublesome ploblems entailed in the Bayesian estimation of random coefficient autoregressive
time series model where the random coefficients have a truncated normal distribution(Son,
1994) or a rescaled beta distribution(Liu and Tiao(1980)). Research on these subjects is under
study and will be reported in the near future.
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