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Statistical Estimation and Algorithm in Nonlinear Functions?
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Abstract

A  new algorithm was given to successively fit the multiexponential
function/nonlinear function to data by a weighted least squares method, using
Gauss-Newton, Marquardt, gradient and DUD methods for convergence. This study
also considers the problem of linear-nonlinear weighted least squares estimation which
is based upon the usual Taylor's formula process.

1. Introduction

Expressions of quantitative physiological data are based on either an empirically derived
equation(s) which summrizes the phenomenon under study or a theoretically derived statistical
model. Of course, they contain parameters with unknown values.

We consider the following nonlinear regression model

y(t)=fx8%)+e, t=1,2,..,N, (1.1)

where  f{(x:8™)=[f(x18%),....AxnB8%)] is the response function, 6*=M x1 is an M

dimensional vector of unknown parameters, and the represent unobservable observational or
experiment errors.

We will assume at first that these errors &‘=(g;.__en) are independently and normally

distributed with mean zero and unknown variance 0°. This kind of nonlinear parameter

estimation problem is an important step in compartmental modeling, i.e. fitting

y(t)=§;Aie hit

Let F(B) be the N x M matrix with elements —aae—jj(xz,e), where time ¢ indexes the

rows and j indexes the columns of the matrix .
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Now, y =(8%)+ ¢
= f(80)+F(B0)(8*-60)+¢ for initial value 8o
=f(80) +F(80)8" - F(80)Bo+¢

Then y-f8q) +F(80)8y = F(80)8*+¢

So the estimate of 8* in y=£6%)+¢ is approximately equal to the estimate of 8% in
z=F(80)8%+¢ where z = y-f(80)+F(80)8o.

The nonlinear regression (cf. Bard, 1974; Box, 1971) uses an iterative process : an initial
value for 8*is chosen and continually improved until the errors sum of squares €’€(SSE) is

minimized. This study considers the problem of linear-nonlinear weighted least squares
estimation which is based upon the usual Taylor's formula process in Section 2. In Section
3, a new algorithm was given to successively fit the multiexponential function/nonlinear
function to data by a weighted least squares method, using Gauss-Newton, Marquardt,
gradient and DUD{(Doesn’t Use Derivatives) methods for convergence.

2. Weighted Nonlinear Least Squares Estimators

Given observation y(t), t=1,2,..,N any vector 8 that minimizes the sum of squares
function

SSE(8) =[y-£8)1'[y-£6)] 2.1)
will be called a least squares estimator (LSE) for 8*

The statistical behavior in large samples is suggested by the approximations

0 0%+ (F'F)'F and (2.2)
2 _ _E'I-F(F'F)'F'
s® = N-M (2.3)

where s® is the estimate of the variance of the &; and F= (%& f£x:,8)) is N x M matrix
J

of derivatives where ¢ is the row index and j is the column index. These equations indicate

that in large samples the random variable © has a M-dimensional multivariate normal

A2
distribution with mean 8% and variance-covariance matrix 0*(F‘F)’, and that AN-M)s' UJZW )s

is independently distributed as a chi-squared variate with N-M degrees of freedom. Then
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.- 8%, ) ..
'3 — ~ is distributed as a t-distribution with N-M degrees of freedom where is i-th
Cii

diagonal element of [F*(B)F(8)]'. A (1-2)I00 % confidence interval for 8%, is

6;£vs? ¢

The hypothesis Ho :8;=8j can be tested at the @ level of significance using

P

- ~ B,-0
test statistic il = | - Am' ~t o« (N-M),
S Cii 2

where Hy is rejectd if | &) » t « (N-M).
2

The classical linear or the nonlinear regres-ion theory is baseu on the assumption that error
terms of the model under consideration are sequentially independent,
that is,

Var(e)=0?I (24)

In many practical(medical) problems, however, this assumption is not appropriate (cf. Dell
et. al,1973; DiStefano et. al,1984; Landaw et. al,1984). In this section, the assumption (2.4)

will be replaced in the nonlinear model (1.1) with an error term € , for which
E(eg') =¢%v (255)

where V is an N X N known positive definite matrix. If V is a diagonal matrix, but with
unequal elements, then the errors ( thus, the observations) are uncorrelated with unequal
variances, while if some of the off-diagonal elements of V are non-zero then the errors are
correlated.  Examples of correlated errors arise in time series models where observations
occur at successive intervals of time and in numerous engineering applications. Then errors
can be accounted for by using weighted least squares.

For example, if the error terms &.’s satisfy the differences

%a,’Et-,’ =U; , t=1,2,... (2.6)

where ao=1, g is a known positive integer and {u: } is a pure random process (i.e., white

noise ) with zero mean and variance o° > 0, then the process {€:} is called an
autoregressive process of order q (AR{(q)).
Let y=f8%)+e , with ¢ independently and normally distributed with mean zero and
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unknown variance 0%V , where V is an N X N known positive matrix.
The general idea in estimating nonlinear parameters is :
Qly =Q '£8*)+Q ' , where QQ"' for some nonsingular Q.

Then Q ‘e ~ N(0,6°D).
So, the LSE of 8 using Q'y is the 8 that minimizes

SSE(8) =[Q'y-Q ' A0]'(Q 'y-Q'A8)]
=(y-£0)QH'Q (y-£8)) @n
=(y-£0)'V (y-£8))

A vector 8 which minimizes the generalized least squares function

[(y-£8)'V  y-£8)]
will be called a generalized least squares estimator (GLSE) (cf. Christensen ,1990, 1987;
Berger et. al.1992) for, and it depends on y, where

y'=(y(1),..,y(N)) and £(8*)=[fx1,8™),... 0 xn,0%)]
In particular, if V is a diagonal matrix then 8 is a weighted least squares estimates
(WLSE) for 8*. If V =1, then § is an ordinary least squares estimator (LSE).

The iterative algorithm -for obtaining 8 is based on Taylor's expansion theorem

f8) = f80)+F(80)(8*-8o) for the initial value 8o 2.8)

and F=( —5§B—JTf(x:,9)) is an N X M matrix.

Then SSE(8)= Il @ [y-f80)1-Q 'F(80)(8*-8p) 1 2
So the next 01 that minimizes SSE(8 ) is
81-080 =[Q 'F(B0)Q 'F(80)]1 Q' F(8:)1Q 'y-Q '£60)]
=[F'(80)V IF(80)]1 ' F (80)V  [y-£680)]
We get 8:=80+(F'VF)'F'Vlr , where r=y-£80q) .

To obtain the asymptotic distribution theory, Equation (2.8) is repeated expanding at 8=0*
Then we get
B=0*+(F'V'F)'F'V'e where F=F(8"). (2.9)

The estimate of the variance for € corresponding to the least squares estimator B is
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tiy_ tyr-1 _ _ -

These two equations, assuming & —~ N( O,UZV) with V known positive definite, indicate

that in large samples the vector 8 has a M-dimensional multivariate normal distribution with

_ 2
mean 8% and variance-covariance matrix 0%(F'V'F)"!, and that '(NO—ZM)S independently

distributed as a chi-squared variate with N-M degrees of freedom ( ie, **(N-M) ). Other
possible tests include likelihood ratio tests. The asymptotic properties of some of these have
been investigated by Gallent (1975). Halperin (1963), and Hartley (1961) show in setting that
it is possible to construct exact tests for certain hypothesis in nonlinear regression.

Consider a general solution form represented by an n-compartment linear model (cf. Landaw
et. al, 1984), with observations in a single compartment following an impulse input or a
constant step input. We have seen that the model output may be represented by the
time-dependent function

¥ = 2Aie hit A< A <0 (2.10)

Here y(t) is in effect the prediction of the data by the model at the time t. For this model,
we have the parameter vector 8 =[Ay,\y,....,Anrs]° as an ordered set of the 2n parameter
constants. Fitting multiexponential form is nonlinear regression and can be obtained by
several packages ( ie, SAS, BMDP etc.). But some specific improvement of
sums-of-exponentials in algorithm properties can be achieved by exploiting the observation
that the model is only nonlinear in half the parameters (see next section). The following is a
physiology example of fitted parameters with specific weight.

Example 2.1 (Landaw & DiStefano(1984)). Suppose a set of noise data y(t1)y(t2),...y(tn)

collected from a system y(t) = z(t,p)+&(t) has been fitted to the biexponential function
Equation (2.10), using a weighted least squares procedure. After a rapidly applied dose
D=100, the noise is thought to have 10 % coefficient of variation. Table 2.1 summarizes
observed values y(¢;) collected from this system at nine times ¢, plus their weights w;
used in performing a WLS analysis. Table 22 is a summary of output after performing a
WLS fit of multiexponential models of orders 1, 2, and 3 to the data in Table 2.1. The
two-exponential fit shows a significant improvement( p = 0.04 ) but the three-exponential fit
doesn’t ( p = 0.99). This is an evidence that the two-exponential model fits well enough.
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Table 2.1 Sample times, observed values, and weights

Run Title and Date

Datum Poinit Time Observed (y) Value Data w;
1 0.0000 102.3000 0.00956
2 0.5000 71.7000 0.01945
3 1.0000 41.4000 0.05834
4 2.0000 35.5000 0.07935
5 3.0000 18.0000 0.30864
6 4,0000 13.0000 0.59172
7 6.0000 8.07000 1.53551
8 8.0000 3.64000 7.54740
9 10.000 1.97000 25.76722

All data is weighted by 1/(error variance). Constant Coef. of variation = 10.00%.

Table 2.2 Parameter estimate summary for sum of N exponentials

Number of Exponentials

1 2 3
Al ‘ 67.4410 53.1601 27.4852
A -0.3674 -1.6705 ~-2.3654
A2 50.33452 27.7052
Az -0.3241 -1.1799
As | 486972
A3 -0.3203

Summary Statistics

Final weighted RSS 30.8456 8.6417 8.5923
df 7 5 3

WMSE ( WRSS/f ) 4.4066 1.7283 2.8641

F ratio (2 vs. 1, 3 vs. 2) 6.4238 0.0086

P value of F test 0.0415 0.9914
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3. Numerical Algorithm of Weighted Linear-Nonlinear Regression

An algorithm of weighted nonlinear regression is presented in which all the parameters to
be estimated can be regarded as nonlinear fthe traditional approach) or reclassified as
linear-nonlinear. The theoretical basis for the reexpression approach is given and an example
is presented which allows a comparison of the all nonlinear to the linear-nonlinear method
employing widely used iterative techniques such as Hartley (modified Gauss-Newton)
(1975,1961), Marquardt(1963), Gradient (1989), and DUD (1979).

The weighted nonlinear least squares problem may be defined as the estimation of
parameters in a model by the method of least squares when the parameters enter into the
model nonlinearly. Let y= j(G*)+8, where & represents the N X ] observational error
vector arising from independent multivariate normal distributions with mean 0 and variance

UZV, V known positive definite and 8 is the M X ] vector of parameters . Also, we
define f(8) = [fx1,0),...fxn6)las an N X I matrix of predicted values . Then the

parameters in the equation vy =f8%)+e can be logically expressed in linear and nonlinear

form :
g1{x1:B), galx1;B), . ) . L gedxuB), 11y
g1(x2:B), galxz:B), . ) . S Ze(x2:B), | a2
y = . . ‘ . ‘ : < J+e 3.1
aien®), g2, . . gaend) | |y

where d3,dz,...,04 are g linear parameters, B is the r X I vector of nonlinear parameters.

Then the equation y = f8*)+¢ takes on the multiple regression form , Ga+&, where G
is the above matrix. So we have E(Y) = Ga, where the expected value of a vector y of N
observations is equal to a linear combination of the g columns of the N X q G matrix of
linear independent functions g(xsB) with « as the ¢ X I vector of linear parameters.,

Now, Equation (3.1) yields SSE(8) = [y-£8)1‘'V"[y-£8)]land the estimated parameter 8

N
is the WLSE such that minimizes SSE(8) = [y-£8)1'V " [y-£8)] or gwh(yh—ﬂxh;e))z, for

particular choice ws.
Therefore, applying Equation (3.16),

SSE(8) = [y-f8)1'V [y-£6)]
ly-Gal'V [y-Ga]

= K(a,p).
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The problem becomes one of calculating g a’s and r B’s using weighted least
squares estimates of @ and 8 to yield the minimum value of K(a,B).
So we have
= GGV 'G) GVl 32)
and then
SSEB | @) = y'(I-Gs( GTsV ' GT9) " GTsV Dy, (33)

~

which is a function of the r nonlinear parameters of 8 which reaches its minimum at B . Of
course, the parameter space for the nonlinear part has been reduced in dimension from
M=g+r to M=r The algorithm to be presented employs the above technique of

reexpressing the nonlinear parameters into linear-nonlinear forms, calculating the linear
parameters by linear regression, and using variations of the various methods discussed before
( e.g. Gauss-Newton, etc.) to calculate the least square estimates of the nonlinear parameters.

Proposition 3.1. SSE(8) = (r-Fé YW (r-Fé), where W is a weight function,

r y1-fxi8% 8:- 6%
r yo-fxz8” 82— 8%
r = . = . , 6 = . ,
r'N yN—ﬂ'xN;BO) SM-‘BOM
3 £x1;8) 3 fxy,0) 3 fx1,8)
20, XD e a0
9 £x1;0) 3 fx1.8) 3 fx1;0)
a6, ab, e 0By
F=
afxn®) _afew®  _3fxnB)
908, a0, e 30

Proof ) Let y = j(B*)+Q'18, where € is n X 1 vector of N(0,0°V) and V is known
positive definite , taking inverse matrix above,
o Qly=Qf8*)+Q ", where Q 't ~ N(O,0%D).

and we have SSE(8) = (y-f8)'V (y-£8))

N
’,Z:;wh[)/h‘ﬂx,'h;e)]z, for special weight wa ,
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N
= ,gwh[yh—ﬂxh;eo)—ﬂeo)(e—60)12

N ] ;0)
=hz=i[}’h‘ﬂxh;80)"2(ei“ 90,’)—12)(3—’2—— | 8,12
Then
3 fx1,0) 9 f(x1,0)
y1- fx1;8% ag; 30 8:- 0%
w?(r-ps) = w”| . -
yn-fxn8% 3 fxn;0) 3 fxn;0) Bar- 6%y
90, 30y
(8=eo)
M ] ;0
yi- fex8%) - 20 8% —LEEL
80
= LLJI/2 ...........................

M .
yx=fxenB) - 2(8:- 8°) % |

80

Therefore , we proved (r-F8)'W (r-F8) =W (r-F83)J[WY(r-F38)]1=SSE(8)

Proposition 3.2. A% =v where A=F'V'!P and v=FV'r.

Proof :
From proposition 3.1 and W = V'l, we know that
SSE(0) = (IC—FS)'W(r—FS)
= 2 walya-LxxiB0) ~F(80)(8-80)1%.
By taking derivative with respect to & and equating to O, ie. 85?‘1;,"( ) =0, for

i=1,2,..M. we obtain Ad%=v.

Theorem 3.3. If reexpress the nonlinear parameters in A3=v in linear-nonlinear form,
then
52=(Axn-An An '-Ar) 'vs, (3.4

where [‘2; ﬁg][g;]=[3;],8=[g;], v=[3;], and &;,vi, are the linear terms and

82,02 are the nonlinear terms.

Proof ) With the choice of the WLSE of a° given BO, then vi=0 and so
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[A“ AIZ] [ 81] = [ 0 ] Therefore , 82=(An-Az Au ‘A1) V.
Az Ax]ld: U2

Equation (3.4) is used by the program at each iteration to obtain the correction terms for
the nonlinear parameters. Th! equation essentially replaces the equation in proposition 3.2
which would be used when all the parameters are considered as nonlinear. The algorithm
allows the option of using the Gauss-Newton, Marquardt, Gradient or DUD technique to
obtain the solution to Equation (3.4).

In summary, the algorithm schemes are :

(a) Choose initial values , B’ ( nonlinear parameters) , and calculate initial linear
parameters , a’= G ( GV ! Gs) GV,

(b) Compute iteration 82=(Az-Az An ‘A1) V2. for next using Gauss-Newton,

Marquardt , DUD, or Gradient methods, and then calculate «.
(c) Check for convergence .
(d) Stop.

Based on the previous physiological Example 2.1 and considering several multiexponential
models and the linear-nonlinear algorithms as described above four Gauss-Newton, Marquardt,
DUD or Gradient methods, we make the following conclusions.

4. Advantages of Linear-Nonlinear Algorithm and Results
In many cases tried, it appeared that the proposed method was the more stable method in

comparison with the usual method and one conclude the following in regard to new algorithm
presented:

(a) Easier to choose initial values.

Models Nonlinear Model Linear-Nonlinear Model
1 Exponential form Choose 2 parameters Choose 1 parameters {(only)
2 Exponential form Choose 4 parameters Choose 2 parameters (only)
3 Exponential form Choose 6 parameters Choose 3 parameters (only)

(b) One step regression (for linear part ) is much better (exact) than that of the graphical
curve-peeling method.

(¢) If we use Gradient or DUD_ method , Linear-Nonlinear is particularly better than
Nonlinear Model .

(d) If we use Gauss-Newton or Marquardt , the number of iterations need for convergence
in Linear-Nonlinear method is greater than the number in Nonlinear method, but the total
cpu time is likely to be less.
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