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Signed Linear Rank Statistics for Autoregressive Processes
Hae Kyung KimD, Il Kyu Kim?

Abstract

This study provides a nonparametric procedure for the statistical inference of the
parameters in stationary autoregressive processes. A confidence region and a
hypothesis testing procedure based on a class of signed linear rank statistics are
proposed and the asymptotic distributions of the test statistic both under the null
hypothesis and under a sequence of local alternatives are investigated. Some desirable
asymptotic properties including the asymptotic relative efficiency are discussed for
various score functions.

1. Introduction

Let X. t=0,%1,.. be a p-order autoregressive process with mean zero, that is

Xt:ﬁl BjX[—j"’ V. (L.1)

j=

where the V. are independent identically distributed (iid.) random variables with a common

distribution function G. Assume that the processes is stationary, that is, all the zeros of

polynomial ¢(z) lie outside the unit cicle where ¢(z)=1—i1[3 iz'. Suppose G possesses
<

absolutely continous and symmetric (about zero) probability density function g with a finite
Fisher information

I {—i}(fci)‘?—}zdam (< @) (12)

where g~ (x)= —4%;'& exists ae..

The parameter B=(B1,...Bp) " is unknown and the problem of the time series analysis is to

make inference about B in some optimal way, on the basis of observations X t=1,.,n. In

the classical parametric approach, there are several procedures one can use for estimating or
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hypothesis testing. Especially, the method of maximum likelihood is widely used and has been
shown to have certain optimum properties Mann and Wald (1943) developed the maximum
likelihood estimators as well as the asymptotic theory. It is implicitly assumed in performing
this method that the errors V., are normally distributed and this assumption sometimes may
be unrealistic. Under the assumption of normally distributed errors the least squares method
and the (conditional) maximum likelihood method are equivalent.

In this paper we propose a nonparametric procedure for the estimation and testing
hypotheses about B, based on signed linear rank statistics when the distribution of errors in
the model (1.1) is not necessarily normal. In Section 2 we define a class of signed linear rank
statistics suitable for deriving a confidence region and test statistics, and investigate the
asymptotic behavior of the statistics. An asymptotic confidence region and test procedure for
the hypothesis about B are proposed in Section 3. In order to study the asymptotic power
properties of the proposed test, the limiting distribution of the test statistic is derived in
Section 4, under a sequence of local alternatives tending to the null hypothesis at a suitable
rate. Finally the asymptotic relative efficiency (ARE) of the proposed test with respect to the
classical chi-square test based on the least squares estimators is derived in Section 5.

2. Signed Linear Rank Statistics and Their Asymptotic Normality

In this section we shall propose a class of signed linear rank statistics and prove that under
appropriate conditions the statistic has a normal distribution in the limit. Now, we note that
we can observe only X3i,..,Xa On the basis of these observations we shall like to obtain an

efficient estimator of the unknown parameter. For t=0,%1,..%tn, define Y:=1:X: where

I:=1or 0 according as ¢ €{1,.,n} or otherwise. Let Di(B)=Y;- }:B;Yt—j, i=1,.,n, and
o

Ri(B) be the rank of [Di(B)l among |Di(B)l,...|Dx(B)l. Let ¢(u) =01(u)-02(u), 0<u<l,

where 0:(u), i=1,2, are both nondecreasing square integrable functions on (0,1). Let

x=(X1,...X) . Define the statistic

S(x,8)=(S1(x,B),...,Sp(x,B)) (2.1)
where
I R
SuxB) = - BV ey Sen(Due) of 2L 1y (22)

and Sgn(z)=1 or -1 according as z =2 O or z < 0.
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n
The regression constants, % tZ_ZIY e-wu=1,.,p, are random, and the choice of these

constants are inspired by the cofficients in the normal equations of the method of least
squares in the model (1.1). The wide choice of score function ¢ is available. Typically the
score functions may be an inverse distribution function. Various score functions allied to the
expression of the ARE will be discussed in the last section.

The following theorem gives us the asymptotic normality of S(x,B).

Theorem 2.1. Let the model (1.1) holds and let the foregoing assumptions on V: hold.

Then YnS(x,B) has asymptotically a p-variate normal distribution with mean vector zero and

1
variance-covariance matrix foodlz(m)dm, where Cx is the pXp matrix with (yvith

elements, C(u,v)=Cov [ XX t+ly-vl 1 .

To prove this theorem we need the following lemma.

Let us define further notations: Let D;"(B)=X;- gBin-j, i=1,..,n and R;(B) be the rank

of ID{(B)] among |D/(B)l, 1 £t < n. Let x"=(X1-p..,X0,X1,...Xn)" , Define S"(x",B) as
S(x,B) in (2.1) except that Y. D:(B) and R:.(B) are replaced by X D:(B) and R:(B) in

(2.2), respectively. Let Ep and Vars denote the expected value and variance when B is the
true parameter.

Lemma 2.2. Under the assumptions of Theorem 2.1, YnS*(x",B) has asymptotically a p

-variate normal distribution with mean vector zero and variance-covariance matrix

1
Cx [ 0%(@)do.
Proof. Given in the Appendix.

Proof of Theorem 2.1. By virtue of Lemma 22, it suffices to show that for every
u=1,..,p,
Yn (SL(x".B) - Sulx,B)) % 0.
Note that for every u
Es {(Vn [SL(x",B) - Su(xB) 1}* = Vare (Vo [Si(x",B) - Su(x,8) 1} (2.3)
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2

= B (3 [Kewsen(0i®) o L)y, senp.p) o Z<2) )
s B 5 (B [Xewsmoion of )y, sencpipy o LLL) ]2
1
Rs(B) )\ 1%y °

© By [X,-u Sgn(DY(B)) ¢( )~ Ye-u Sen(Du(B) of s )] ]

Furthermore, note that for all ¢

tim Bo’( ZL80) < (et wya, tim Eoo( 2LEL) < timnp o [ 6%wid,
and
. 2
i o S )o ) ) < g () Lo

where p (m=max (p+1sksnt P [R:(B)=k ] which tends to zero as n—®, and 0 is the

derivative of 9. The last inequality follows from the fact that 0<|R:(B)-R,(B)| < p for all ¢,

and the mean value theorem.
From the above results and the fact that Y. ,=0 for 1 < ¢ Su, Yiu=X¢-u for

utl <t < n and D«(B)=D:(B) for p+1 < ¢t < n, where 1< u < p, the (23)

multipling C(0) is, before taking limit, after simplification, less than or equal to
1

2 2 . 1
—un—lo+2u(p-u) [ ;z » i ] Iy + 2u [—M ](Io Iy ) ?

n nin+1)

L

2 L
+(p-u)2[—,11'+p<n) ]Io + 2p(p—u)[ n-p [ ;z +l;") ] (I Iy ) 2

n+l

+[ p’(n-p)* ]Io’

n(n+1)*

. 1 1,
which converges to zero as n — ©, where I, = f 0%(w)dw and Iy =f 0" *(w)dw. This
(] 0

completes the proof.
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3. Confidence Region and Test Statistic

In this section we shall consider asymptotic confidence region for the parameter B in the
model (1.1), and test procedure for the hypothesis aboutB based on S(x,B) defined in Section
2. The asymptotic power properties of the test will be considered in later sections.

The asymptotic normality of vnS(x,B), derived in Theorem 2.1, under the regularity

conditions suggests the use of the pivotal quantity of the form
-1

1 ’
On(xB) = n [Ltbz(w)dw] S’ (xB)CiiS(x,B) (3.1)

where C, is the pXp matrix with (u,v)th elements,

1 n—lu-vl

— X X trtu-ol
n 3] t t+lu-ul

The following theorem gives the large sample distribution of Qnlx,B).

Theorem 3.1. Under the conditions of Theorem 2.1, Qa(x,8) has asymptotically a central

chi-square distribution with p degrees of freedom.

Proof. Theorem 3.1 follows immediately from Theorem 2.1 and the fact that C. converges
to Cx.

By reference to the null limiting distribution of Qn(x,B), we define C1-«(B) as the set of
B such that
S (xB) Cat S(x,B) <38

. 1 1 2 2 2 . .
where 8 is —n‘[ftb(w)dw ]xl-a(p) and 2%-a(p) is the (1-a)th quantile of the

chi-square distribution. Then, for n large Ci-«(B) provides a 100(1-a) percent confidence
region for B.
We also propose the following large sample da-size test procedure for hypothesis

Ho: B = Bo against Hi :B # Bo, where B, is a specified vector : Reject or accept H,

according as Qn(x,80,) 2 or < xi-a(p).
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4. Asymptotic Distribution of @, under Contiguous Alternatives

In order to study the asymptotic power properties of the test considered in Section 3, it is
necessary to study the limiting distribution of the test statistic under a sequence of local
alternatives tending to the null hypothesis at a certain rate. In this section we shall

specifically consider following sequence of local alternative hypotheses H, defined by
Hn:B = Br where Bn= B,+ "7171' (4.1)

where T €R” with each component of T s is positive.

Let (Po,Pn) be a sequence of two probability distributions of (X1,..,Xs) under
H,:B = B, and H, respectively. It is well known that the contiguity of P, to P,
provides the asymptotic normality of a statistic VnA S(x,B.), » €R® under the given
sequence of probability distributions P, if the statistic has an asymptotic normal distribution
under the sequence of probability distributions Po.

We shall define some anxiliary statistics. Let X (:-1,-p=(Xe-1,..,Xr-p) . Then the likelihood

ratio statistic L. for P, vs. P, is

.3 &(Xi=Bn X (t-14-p)
tog L ‘leog[ g(Xt_Bt;X(t—l,t-p)) ] (42)
where g(x:=Bo X (¢t-14-p) > O for all ¢ . Denote
1
' 2
-0 _g(Xt_BfllX(t-l,t-p)) ] _ }
W 2; { [ g(Xt"BoX(t—l,z—p)) 1 (43)

and
2 (G
'1¢7)) g(G-l(u)) , 0<uxl

where G(x)=f_xwg(y)dy .

Before we proceed to consider the main theorem of this section, we present the following
lemma required subsequently.

Lemma 4.1. Under P, logL, has asymptotically N(- %02, 02), where
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, 1
o= v Cxt [ Viwdw. (4.4)

The proof of this lemma is given in the Appendix.
We have the following theorem from Lemma 4.1.

Theorem 4.2. Let the model (1.1) and condition (1.2) hold. Then, under Pn, vn A S(x, Bo),
where A €R” and S(x,B) is defined in (2.1), has asymptotically a normal distribution with
. , 1 1
mean M ¥ and variance ) Cx M J;d)z(w)dw where U=Cx1 fow(w)d)(w)dw and Cx is
defined in Theorem 2.1.

Proof. By virtue of LeCam’s first lemma and Lemma 4., {P,} is contiguous to {Po}. It
therefore suffices to prove, by LeCam’s third lemma, that under Po, (log Ly, Yrn A S(x,8,))

has asymptotically a bivariate normal distribution with mean vector H=(- '%0 2 0) and

; ) . 2 g
variance-covariance matrix Z=[0 ] where on=0° 012=02=h U and

, 1
ox=A Cx) ftbz(w)dw, where 0% is defined in (44). Now, recall the asymptotic

distributions of S ““(x°,B,) and V» which are defined in (A.1) and (A.2) in the Appendix. In
the proof of Lemma 2.2, it is shown that Yn)' S(x,B.) and ¥Yn) S “(x",B,) have the same

, 1
limiting normal distribution with zero mean and variance X Cxlf 0%(w)dw. Moreover, in the
(]

proof of Lemma 42, logL. and \/r_zV,',-—ilZ'Uz both are asymptotically N(——%‘Gz, 0%) under

P, Therefore it remains to show the desired asymptotic normality  of

(VaVi- 0% YA S @(x"B)), which follows from Lemma B in the Appendix. This

completes the proof.

Theorem 4.3. Under the assumptions of Theorem 4.2, and {H»} in (4.1), vnS(x,B,) has

asymptotically a p-variate normal distribution with mean H and variance-covariance matrix

1
CXL 0% (w)dw.
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Proof. The proof of this theorem follows directly from Theorem 4.2.
Then, we have the following main theorem.

Theorem 4.4. Under the assumptions of Theorem 4.2, and {H,} in (4.1), the statistic
@n(y,Bo), where Qn(y,B) is defined in (3.1), has asymptotically a noncentral chi-square

distribution with p degrees of freedom and noncentrality parameter equal to

[_LIW(w)¢(w)dw ]2
2f¢2<w)dw

T’CX‘C (4.5)

Proof. The proof follows, by the same argument as in proof of Theorem 3.1, from Theorem
43.

5. Asymptotic Efficiency of the Proposed Tests

In this section we shall consider the relative asymptotic power efficiency of the proposed
tests ( Q-tests) based on Qn(x,B) with respect to a classical parametric chi-square test ( %2

-test) derived from the asymptotic normality of the least squares estimator ( LSE ).
It is known [Mann and Wald (1943)] that under the assumption that the V. are iid. (but

not necessarily normal), with finite fourth moments, the sequence of the LSE’s B, has

asyrhptotically normal distribution in the sense that
Yn ( Ba-Bo) 5 N, (0, 0%°CxY)
where 6% is the common variance of errors in the model (1.1).
For simplicity, we assume that 0% is known. The x%-test statistic is, therefore,

XZ(X,B) = %( ,ﬁn"ﬂo )’ Cn( ﬁn'Bo)

where Cn is defined in (3.1), and the large sample size a-test for Ho: B=B, has the form:
Reject or accept Ho, according as XX(x,Bo) 2 or < 1i-a(p). It is easily seen that under

Hp in (4.1), this statistic has asymptotically a noncentral chi-square distribution with p
degrees of freedom and the noncentrality parameter
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Ay = v Cx. (51)

202
If under the same sequence of Hn, the two test statistics have non-central chi-square limit

distributions, with the same degrees of freedom, it is known that their ARE is given by the
ratio of their non-centrality parameters.

Therefore, the ARE of the Q-tests with respect to the 1%-test is equal to

A e~
2y _ g
e(Qx) = ——
where A2 and A g are given by (4.5) and (5.1) respectively.

Under the conditions specified in Theorem 4.3, the ARE thus reduces to

2

[foldi(w)lb(w)dw ]

e(@x? = o

le)z(w)dw

and this implies that the ARE depends only on the unknown distribution function G(x) of

errors, through the score function ¢.
Various interesting results allied to the expression of the ARE are given below for the

specific cases :@ First, let ®(u)=u on (0,1) ( Wilcoxon score ). Then, in this case

2

e( Q%) = 1202[f_2g2(x)dx ] .

It is known [Hodges and Lehmann (1956)] that e( Q.x% 2 0864 for all continuous G.
Some particular values are e( Q,x%)=3/n=0955 when g is a normal density, e( Q,x%) =1 for
the case of a uniform, and e( & 1*)=81/64 when g(x)=x’e */T(3) forx20. It is also
known that el @,xz) exceeds one for distributions G with heavy tails (e.g., Cauchy,
double-exponential, logistic distributions etc.). Second, let ¢(u)=9 “T(uw) on (0,1) (Normal

score), where ® is the standard normal distribution function having the density o,

2

+00 2
e @=o’{ [ (q,ﬁég’(x) e |

It has been shown [Chemnoff and Savage (1958)] that e( Q,xH21 for all G. Mikulski (1963)
has shown that e( @,x%)=1 only if G is normal. Finally let ¢(u)=1 on (0,1) (Sign score),
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then e(@1%) =40¢%0).
Thus from the ARE point of view the @ -test using Wilcoxon or normal scores appears to

be superior compared with the classical *%-test in many situations. In particular, the Q-test

using Wilcoxon scores is preferable when the tails of the error distribution are heavy.

Appendix

Proof of Lemma 2.2. Let A=(X,..,h,) be any arbitrary nonzero vector. Define a statistic

which is slight diffierent from S"(x*,B) as

Sx" B)=(S{(x",),...S5(x",B) )’ (A1)
where
S5(x" pr= ZX Sgn(Di(B) o[G°UD; (B 1, u=1,..p,

and G° is the distribution function of [D;(B)l. For simplicity, we write S'=S"(x".B),
S@=5@(x* B). We first prove that vn) S*and Vi) S @are asymptotic equivalent random

variables, and then Yn) @ converges in law to a normal distribution with mean zero and

4 1 * * * *
variance A Cx )\ fosz(w)dw. Note that the vectors (R1,...,Rn), (IDI(B)I,.,1D-(B)) and

(Sgn(D™ (B)),..., Sgn( D, (B))) are mutually independent and Eg Sgn(D:(B))=0 for all ¢
Hence we obtain
Es Ynh' (S-S %= Vary Ynd' (5'-5 )

2

_ Sk Sy fo L1 oLG™ (1D} (B)1) .

n+l
Note that
£y (o 2282 1 orGeapi o) ]}2 = B [of E- ] e }2

which converges to zero, where U:=G (ID;(B)]) are independent niform (0,1) random

variables and R." are the ranks of U: among U, 1< t < n. The above result yields the
first part of the proof.

For the asymptotic normality of YaA S®, note that vnA S©= ZZ (o
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where
7 = '71,7“' X (-16-p 1 Sgn(D; (B) o(U),

where X ¢-1-p=(X-1,..,X t-p ). Then, it is easily shown that for arbitrary

A, '71,'1')~’ X (t-1¢-py, hence Z 9 are asymptotically independent, so that Lindeberg’'s central

limit theorem can be adapted to prove Yn\ S‘” asymptotically normal, with Es Z {92=0 and

, 1 n
0?=Vars Z{° =';11—7\ Cx\ J(;Q)Z("’)dw. Now, let si= ;0?. Then for arbitrary & > 0

L 2 1 & . 2 2
t=1f[lz|>£s..]z dFe < = Zifn[)' X (-1a-p) 1 dF f[lzl>£s»]¢ (w)dw

= A Cx) 0% (w)dw
[zl >&sa ]

where F: and Fx are the distribution functions of Z{” and X (¢-1¢-p  respectively. Thus,

;,z, gfnzmsn]zzdF‘ < [Ll¢2(w)dw ]-lLd)z(w)dw

where D=[w 2-71;-|)»'x<¢-1,:—p> o(w)l > Esn ]

The second term on the right-hand side of the above inequality is less than or equal to

| 0%(w)dw
[w: I6(w) > €8]

where

1 A Cx )
52= 2(w)d L —,
" [\fo 0" (w)dw ] max 1stsn A X (¢-1¢-p) X (¢-1¢-p) A

Since 8,—® as n—®, the Lindeberg condition thus holds.

Furthermore, obviously Es [Va V'S 1=0 , and

, n , 1
Vars Vo ' @ 1= si= 2i0f= A" Cxd [ 0*(wiwdw
= o
as n—®, This completes the proof.

The following lemma is needed to prove Lemma 4.1.
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Let E, and Var, denote the expected value and variance under P, respectively.

Lemma A. Suppose g(x) satisfies condition (1.2). Then under P,

g(X:—B,}Xu-x,z—p)) _1’ > & } -0
[ ’ g(Xt"BoX(!-l,t-p))

lim max i<:<n P

; ma®td

for every € > 0.
Proof. The proof easily follows from the fact that for every ¢t

g(Xt_Br} X ¢-1e-p) -1 I S & } < __1_E _gLXt-BI}X(t—I,t-p)) -1
Po [ g(Xt—Ba X (t~1,t-p)) ] £ 0 g(Xt'Bo X (t-l,l-p))

< 1BomBn) x (1)

l(Xz‘Br’: X (e-1,6-p) ~Z(xe=Bo” X (t-14-p)

’ d(xe=Bo x (i-14-
(Bo-Bn) X (¢-1, ¢-p) (xe=Bo x Le-p))

oo}
<
-0

which converges to

. 1 1 / ® -,
[llmjr'l' ]—EIT X (¢-1,e-pl f_mlg (Nldx = 0,
by the condition (1.2).

Proof of Lemma 4.1. It suffices to prove, by virtue of Lecam’s second lemma and Lemma

A, that under Po,, W is asymptotically N(-—‘ll-ﬂz, 0%, Now, define

Vi = —j;; g((uo—m’mz-w) Sen(Di(B.)) WG (1D (B 1 (A2)

where G” is the distribution function of |D;(B)l. First we shall prove that VnV. has

asymptotically N(0, ¢2), Next, we will show thatVnV, and Wa-E.,W, have the same
limiting distribution. Finally we will show that

02

li.IB)EoWn = -1 (A3)

Denoting U:=G"(ID{(B,)), 1 £ t < n, ¥n V; can be rewritten as vnV,= ;Zz, where
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Z = “Vln' (1" X ere-m ) San(Di(Bo)) WU, (Ad)

From the fact that U; are (iid.) uniform (0,1) random variables, we obtain FE,Z.=0 and

, 1
ol = VaroZ: = "11—1 Cx7 flllz(w)dw. As the proof of the Lindeberg condition for the
o

asymptotic normalty of YV, runs parallel to that of Yn) S in Lemma 2.2, we shall be
omit.
For the second part of the proof, note that

g (DI _ _g (Di(Bo))
g (DI (Bo)D 2(Di(Bo)

Sen(Di(Bo)) o[G (ID: (Bo)1) 1=Sgn(D: (Bo)) (A5)

1
where g'(x)= G° (x). Now, let h(x)={g(x)] 2 so that h /h=g /2g Using (4.3), (A.2)
and (A.5), it follows that, Varo(Wn-EoWn-YnV, ) is less than or equal to

2

Ao opn [ [ ARG i (de(Bo)) | ddtBo),
n t=]1J -0

de(Bn)-ddBo)

which converges to zero.

Finally, to prove (A.3) first we note that

A(D; (Bn)) _1']=
R(Di(B,))

2

HD:(B) ] |

WD (Ba) (A6)

2Eo[ - E[

Using (A.6), it follows that
2

1 . R(D:(Ba))-h(Di(Bo))
EoWn== 7, EEO[” X wrep) (D?(Bn)—D?(Bo))h(D?(Bo))]

which converges to
+ 00 + 00 4 2
-1 Cx 1 f_w R 2 (x)dx —-‘11—1 Cxt fw{—g&%—} dG{(x)

) 1
- —‘11"5 Cx"* sz(w)dw.

The last equality follows by taking squares and expectations on both sides of (A.5). The
lemma follows.

The following technical lemma is needed to prove Theorem 4.3.
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Lemma B. Under the same conditions of Theorem 4.3, and under P, (Ynv,- —%—02,

YA S “x*.B,) where V5, S@(x*, Bo) and 0% are defined in (A1), (A2) and (44)

respectively, has asymptotically a bivariate normal distribution with mean H=(- %02, 0)

and variance-covariance matrix
0? A
1

S=
Vo ) Cy xfo 0% (w)duw

Proof. We first consider Yn(Vi, A" S(x".B,)). Under Po, Yn (Vi A S(x"Bo) )
become
71'n‘5g'n(D:(Bo)) [;1(’13/ X (¢-1,e-p WU D), tZ::l()»’ X -1e-p)0(U) ]

where U, are independent uniform (0,1) random variables, so that

E,[VaVi ] = E,[Vm" S“(x"8,) 1 = 0.
Moreover,

, 1
suln) = Varo[VaV,1 = 1 Cx 1 sz(w)dw,

P , 1
sz(n) = Varo[Vih S(x" o) 1 = A" Cx M sz(w)dw,

and
* ’ (o) * ’ 1
su(m = sam = Covo¥n [V, M Sx"Ba) 1 = M Cxt [ ww)o(wd,
which are finite. From the above results, we §= (-7102, 0), 0 u=snu(n)=0?

, . 1
012=02=sa(n)=h U and Oxm=szn(n)=r Cx ) fdlz(w)dw. Now, we have to show that

under Po, Yn (Va, A" S“(x*B,)) has a limiting bivariate normal distribution. For any reals

I1 and Iz, let
Jn= 1 (YnVy) + 12 (¥ah" S9x",8.,)).

n
Then Ja= Z__.;Tz where
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T, = 71,-1-5gn(D:(Bo>) [0 X e UD+ 120 X eaeep)0(T) |

which are asymptotic independent, E.T:=0 and 07=Var,T: is equal to

2 1 2 1 1
A opr [waw + “2ve xn [owidw + 2222 ve 1 [ wwitwdw.

It remains to show that the Lindeberg condition holds : for every &€ > 0,

7

. 2 _
lim = 3 f[m . MdH. = 0 (A7)

neo 55 1

where si= go? and H, is the distribution function of 7: . However, the proof of (A.7) is

quite analogous to that of YA S in Lemma 2.2, we shall be omit. The proof is complete.
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