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On Combination of Several Weighted Logrank Testsv

Park, Sang-Gue? and Jeong, Gyu-Jin®

Abstract

We consider a class of the weighted logrank tests and 4 types of weights in this
class. We propose a test based on the maximum of 4 weighted logrank statistics and
suggest a simulation technique to obtain the p-value of proposed test. It is shown
through the simulation studies that the proposed test is robust and has reasonably

good powers comparing with the well known efficient tests.

1. Introduction

Suppose that we are interested in detecting the differences of two treatment effects when
some of data are censored. Among many researches in this area, the logrank test and
Gehan(1965) test seem to be the most popular nonparametric tests. The weighted logrank test
has been introduced by Tarone and Ware(1977) who showed that the logrank test and Gehan
test belong to same class of the weighted logrank tests. Since Tarone and Ware, many
modifications of the logrank test have been done by using different weights(See Fleming and
Harrington(1991) and Jeong and Park(1994)).

When we test the equality of two distributions, it is well-known that the logrank test is
efficient for exponential distributions and Peto-Prentice test(Peto and Peto(1972),
Prentice(1978)) is efficient for logistic distributions. More general results on optimal weights of
the weighted logrank tests can be found in Harrington and Fleming(1982). Since the optimal
weights depend on the underlying distribution, one might fail to detect the existing differences
with the improper weights. Because of difficulty to choose the right weights, it seems to be
natural to emphasize the robust aspects of the test. In this point of view, Tarone(1981)
proposed a test, which combine the logrank test and Gehan test. This test is based on the
maximum of those two test statistics. This is the motivation of our research and we
generalize the Tarone's test.

We consider a class of the weighted logrank tests and 4 weights in this class. We propose
a test based on the maximum of 4 weighted logrank statistics and suggest a method to find
p-value of the proposed test by simulation instead of numerical computations. We further
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examine the empirical powers under some population distributions through the simulation
studies.

2. Weighted logrank test

The heuristic development of the logrank statistic used a conditioning argument based on
the risk set, which consists of the members at risk of failing just prior to each observed

failure time. Let 71<T7T2<..<T4 denote the ordered observed distinct failure times in the
sample formed by combining the two groups, whose sample sizes are n1 and nz respectively,
and let Di and Yi, (i=1,2 k=12,..,d) denote the number of observed failures and number at

risk, respectively, in sample i at time 7% The data at Tx can be summarized as in the

following table.

Table 1. Numbers of cases failing and not failing
at T from the risk set

samples
Failure 1 2 Total
Yes D Do Dy
No Yi-Du Yo~ Dok Y- D«
Total Y Y Y«

Given Yux, Dui has a binomial distribution with number of trials Y. As in Fisher’s
exact test, by conditioning further on Dk, Dy has the hypergeometric distribution. This has

conditional mean E'w and variance Vi given by

Vi Vo _Ya-Ds
Y« Yi-1

Given the margins each of the d tables at the observed failure times, if we assume that
observed minus expected number of failures,
{Du-Eun,...Dwu-E1} ,
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are independent over time, then the weighted logrank statistic with weights W(Tx)

d
kZIW(Tk)(DIk‘Elk)
Qnw = — (1)
J}:;lW(Tk)zv;k

should have approximately a standard normal distribution as N(= ni1+ nz) goes to ®©, Now we
can use the statistic @~ in the usual way to test the hypothesis Ho : Folx) = Fi(x) vs
Hi: Fo(x) 2 Fi1{x) with at least one strict inequality for some real number x.

Among the weighted logrank statistics given by (1), we are specially interested in the class
of statistics with weight function W(s) = {8(s-)}* {1-8(s-)}" for p20, r>0, where S(¢)
is Kaplan-Meier estimator of survival function based on the combined sample. This class is
denoted by GF’. With r=0, this G&" reduces to the G& class introduced by Harrington
and Fleming(1982). Particularly, if we set p=0 and r=0, then we get the logrank test and
if we set p=1 and r=0, then we get Peto-Prentice test.

We consider 4 types of test statistics among GF&' class; ie, (p,r)={(0,0), (1,0), (0,1), (1,1)}.
Let Twni, Twnz2, Twn3, Twnsa be the weighted logrank test statistics based on the above 4
weights. We propose a test statistic for testing Ho against Hi

Trax = max 1si<sa T

In order to obtain a powerful test we should use the proper weight function. As we
mentioned previously, the logrank test based on T, is efficient for exponential distribution
and Peto-Prentice test based on Twy: is efficient for logistic distribution. Tests based on T3
and Tw~4 are sensitive to detect late and middle differences, respectively. We never know,

however, the proper weights unless we know the population distributions and the improper
weights cause inefficient tests in some situations(Jeong and Park(1994)). This is the
motivation of this research and we want to construct a robust test. We expect that 4 weights

considered in G&' class are sufficient for our purpose.

We now describe the distribution theory needed to implement the distribution of 7 max. It is
well known that the asymptotic distribution of T, is normal distribution, but the distribution
of Tma is very complicated. One might use Bonferroni inequality or Sidak’s inequality, but it
is too conservative. Tarone(1981) used the maximum of 7T~1 and Gehan statistic. Tarone

considered the asymptotic distribution of it and provided critical values with the corresponding
correlation coefficients. One can use numerical integration techniques for multivariate normal
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distribution such as Tarone used the bivariate normal distribution. But it is very boring and
complicated. We suggest to use simulation technique to obtain the p-value of test based on

Tmex. This method was used in solving different problems by Hettmansperger and

Norton(1987).
Let 3 be the covariance matrix of Twn=(Tn1Tn2Tn3Tna)'. Since 2 is positive definite,

it can be written as
2 = BB’
where B is a upper triangular matrix and can be calculated by the square root method(See

Graybill(1969), p.299). Letting Z ~ MVN( 0, 1) and if N goes to ® in such a way that %

remains a constant, we get

In > BZ
where —> means convergence in distribution. Then T~ has a limiting MVN(Q, BB’)
distribution. It further follows that, under Ho,
max I~y — max BZ.

The distribution of max B Z is intractable and can be computed or approximated only in a
very few special cases(See Johnson and Kotz(1972), Ch.3). It is quite simple, however, to
t, then the appropriated

simulate probabilities of max B Z. If the observed value of I is
p-value of a test based on max T is given by
Pr(maxBZ 2 maxt).

We now can obtain the p-value of Tmex by calculating B with given data and generating

standard normal random vector Z's.

3. Simulation and Conclusion
3.1 Simulation design

We compare the empirical powers of 6 tests; test 1 with weights (0,0), test 2 with (1,0),
test 3 with (0,1), test 4 with (1,1) and test 5 = max I~ with critical values given by
Bonferroni inequality, test 6 = max T~ with critical values given by simulated probabilities.

We set population distributions to 4 types:

Type 1: exponential distribution with parameter 0.01 for control group and exponential
distribution with parameter 0 for treatment group,
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Type 2: exponential distribution with parameter 0.01 for control group and mixed exponential
distributions with parameter 6 if Fi(¢) < 06, 0.01 for elsewhere,

Type 3: exponential distribution with parameter 0.01 for control group and mixed exponential
distributions with parameter 0.01 if Fi(¢) < 0.7, 8 for elsewhere,

Type 4: double exponential distribution with parameter 100 for control group and double
exponential distribution with 6 for treatment group.

Type 2 and 3 are considered for early and late differences, respectively. We also set
censoring distributions proportional to population distributions and use 10% censoring rate.
Given distribution of the failure time, the parameter A of censoring distribution can be
calculated by solving the following equation,

01 = P{X>C},
where X is the failure time random variable with given distribution function F(8) and C is
the censoring random variable with distribution function G(}). Given 8, we can calculate .
We also tried 25% censoring rate, but the results are quite similar so that we decide not to
put it in considering the space.

We use two sample sizes configurations ni=nz = 30 and ni=n2 = 50 and repeat 1000

times to obtain empirical powers under level a=0.05. We also use 1000 repetition to simulate
the distribution of max I~ at each repetition. The program is written by FORTRAN

language and we use IMSL subroutine programs to generate random numbers.

3.2 Simulation results and conclusions

For the case of type 1, test 1 has been known as the efficient test. Table 1 proves that the
test 1 is the most powerful as we expected, but test 6 also very powerful.

For the cases of type 2 and type 4, test 2 has been known to be very efficient for the
location models and early differences. Table 2 and 4 are also showing this, but test 6 also
very powerful.

For the case of type 3, we can expect that test 3 is efficient for late differences since test
3 emphasizes later weights comparing to earlier ones. Table 3 showes this, but test 6 also
very powerful.

Test 5 based on Bonferroni inequality seems to be quite attractive because it is very simple
to execute. But it turned out to be too conservative under Ho and did not seem to be

recommendable in view of powers as well.

If an experimenter has some informations about the population distributions, use it and
choose the proper weighted logrank test. Then he can have very powerful test. But if he has
no idea about population distributions and use the particular weighted logrank test, he might
fail to detect real differences. For some cases powers barely maintain the significant levels.
That's why we need the robust test. Carefully looking the tables, we can find out that
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proposed test 6 is quite powerful test comparing with the efficient test in each table.

One can use different weights (p,r) or more than 4 types of weights. Since testing
procedure can be completed easily if we have normal random number generator, one can
consider to do it. However, if one uses more types of weights, we have to expect some loss
of powers. We think that considered 4 types of weights are reasonable and practically very
useful and should be recommended in view of robustness and powerfulness.

Table 1
Population Distributions : Type 1
Censoring Distributions : Exponential( )

| sa'mple Test 1 | Test 2 | Test 3| Test 4| Test 5 | Test 6

A sizes
0.01 30 0053 | 0052 | 0.0%5 | 0057 | 0.032 0.057
0.0011 50 0056 | 0056 | 0056 | 0053 | 0.034 0.056
0.009 30 0.110 | 0103 | 0100 | 0105 | 0.059 | 0.107
0.001 50 0.125 | 0113 | 0105 | 0.113 | 0.061 0.122
0.008 30 0220 | 0186 | 0204 | 0192 | 0146 | 0.210
0.0009 50 0278 | 0254 | 0268 | 0268 | 0.162 | 0.304
0.007 30 0370 | 0317 | 0351 | 0346 | 0.268 | 0.355
0.0008 50 0430 | 0389 | 0415 | 0403 | 0.288 | 0425
0.006 30 0560 | 0462 | 0520 | 0508 | 0452 | 0.548
0.0007 50 0752 | 0658 | 0698 | 0.702 | 0490 | 0.742

Table 2

Population Distributions : Type 2
Censoring Distributions : Exponential( A)

8 sa.mple Test 1 | Test 2| Test 3| Test 4| Test 5 | Test 6

A sizes
0.01 30 0044 | 0045 | 0.059 | 0046 | 0.029 | 0.055
0.0011 50 0.059 006 | 0058 | 0060 | 0037 | 0.056
0.008 30 0079 | 0.108 { 0.060 | 0063 | 0051 | 0.09
0.0009 50 0.103 | 0.157 | 0.058 | 0.081 | 0.070 | 0.132
0.006 30 0159 | 0256 | 0066 | 0.137 | 0136 | 0.233
0.0007 50 0213 | 0405 | 0.068 | 0.181 | 0213 | 0.387
0.004 30 0.394 0629 | 0120 | 0.329 | 0.405 0.599
0.0004 50 0.530 0832 [ 0125 | 0450 | 0.647 0.811
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Table 3
Population Distributions : Type 3

Censoring Distributions : Exponential( A)

8 sa.rn ple Test 1 | Test 2 | Test 3| Test 4 | Test 5 | Test 6

1y sizes
0.01 30 0.053 | 0052 | 0055 | 0057 | 0.032 | 0.057
0.0011] 50 0056 | 005 | 0056 | 0053 | 0034 | 0.056
0.008 30 0134 | 0070 | 0.182 | 0126 | 0.092 | 0.152
000097 50 0.144 | 0068 | 0236 | 0150 | 0110 | 0.172
0.006 30 0218 | 0096 | 0430 | 0216 | 025 | 0.240
0.00077 50 0368 | 0.106 | 0622 | 0328 | 0.328 | 0.468
0.004 30 0.368 0108 | 0.706 | 0.329 | 0.456 0.566

0.0004] 50 0532 0162 | 0868 | 0467 | 0.722 | 0.699

Table 4
Population Distributions : Type 4

Censoring Distributions : Double Exponential( })

3]
sa'mple Test 1 | Test 2 | Test 3| Test 4| Test 5 | Test 6
r sizes
100.0 30 0.054 0.055 | 0.060 | 0.061 0.032 0.057

102.4 50 005% | 0056 | 005 | 0055 | 0034 | 0.057
0227 | 0263 | 0162 | 0219 | 0166 | 0238

100.3 30

102.7 50 0304 | 0320 | 0166 | 0264 | 0277 | 0.290
100.5 30 0445 | 0519 | 0238 | 0397 | 0344 | 0480
102.9 50 0587 | 0684 | 0304 | 0566 | 0577 | 0644
100.7 30 0635 | 0736 | 0338 | 0584 | 0579 | 0689
103.1 50 0801 | 0828 | 0576 | 0.742 | 0.733 | 0.803




220 Park, Sang-Gue and Jeong, Gyu-Jin

References

[1] Gehan, E.A.(1965). A generalized Wicoxon test for comparing arbitrarily single censored
sample, Biometrika, Vol. 52, 203-23.

[2] Fleming, T.R. and Harrington, D.P.(1991). Counting processes and Survival analysis, John
Wiley and Son, Inc. New York.

[3] Graybill, F.A.(1969). Introduction to matrices with applications in statistics, Wadworth
Publishing Company, Inc. Belmont, California.

[4] Harrington, D.P. and Fleming, F.A.(1982). A class of rank test procedures for censored
survival data, Biometrika, Vol. 69, 133-43.

(5] Hettmansperger,T.P. and Norton, R.M.(1987). Tests for patterned alternatives in k-sample
problems, Journal of the American Statistical Association, Vol. 82, 292-99.

[6] Jeong, G. and Park, S.(1994). Weighted logrank test for late differences, Korean Journal of
Applied Statistics, Vol. 7, No. 2, 79-88.

[7} Johnson, N.L. and Kotz, S.(1972). Distributions in statistics: Continuous multivariate
distributions, John Wiley and Son, Inc. New York.

[8] Peto, R. and Peto, R.(1972). Asymptotically efficient rank invariant test procedures (with
discussion), Journal of the Royal Statistical Society, A, 135, 185-206.

[9] Prentice, R.L.(1978). Linear rank tests with right censored data, Biometrika, Vol. 65,
169-79.

[10] Tarone, R.E.(1981). On the distribution of the maximum of the logrank statistic and the
modified Wilcoxon statistic, Biometrics, Vol. 37, 79-85.

[11] Tarone, RE. and Ware, J.(1977). On distribution-free tests for equality of survival
distributions, Biometrika, Vol. 64, 156-60.



