B AL =23 A24 2%
1995d 129 pp. 231-242

Smoothing Parameter Selection in Nonparametric
Spectral Density Estimationl)

Kee Hoon Kang, Byeong U. Park, Sinsup Cho, Woochul Kim?2

Abstract

In this paper we consider kernel type estimator of the spectral density at a point in
the analysis of stationary time series data. The kernel entails choice of smoothing
parameter called bandwidth. A data-based bandwidth choice is proposed, and it is
obtained by solving an equation similar to Sheather(1986) which relates to the
probability density estimation. A Monte Carlo study is done. It reveals that the
spectral density estimates using the data-based bandwidths show comparatively good
performance.

1. Introduction

Investigating the structure of underlying spectral density is crucial in the analysis of
stationary time series. See Brillinger(1981) and Priestly(1981) for interpretation of spectral
density and its relation to the autocorrelation function, Fitting an autoregression, with an
appropriate choice of order for the model, is most popular as a method of estimating spectral
density. But, this method is based on fitting a parametric model and so is defective when the
fitted model is inappropriate. Alternatively, a kernel estimate may be used. It is obtained by
smoothing periodogram with a spectral window called kernel. Like all other methods of
estimating spectral density nonparametrically, this method entails choice of smoothing
parameter, called bandwidth. An unsuitable choice can produce poor estimates of spectral
densities. An arbitrary choice is almost the same as an arbitrary choice of order for some
approximating parametric model.

However, past years have seen a few literature on the bandwidth selection problem in
kernel spectrum estimation. Robinson(1991) discussed for asymptotic theory of some kemnel
spectrum estimates in the presence of data-dependent bandwidths, Hurvich(1985), Beltrao
and Bloomfield(1987) introduced a bandwidth selection method based on a cross-validation
criterion. Park, Cho and Kang(1994) considered a plug-in bandwidth which is obtained by
plugging some suitable estimates into the unknown parts, integrated squared density
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derivatives, of the theoretically optimum choice. The theoretical performance of the estimate of
integrated squared density derivatives was investigated by Lee, Cho, Kim and Park(1995). All
these are related to global bandwidth selection.

In this paper, we propose a data-driven bandwidth selection method which is suitable for
estimating the spectral density at a point. It has similar flavor to the data-based method of
Sheather(1986) in probability density function setting. We investigated the empirical
performance of the proposed method by a simulation, where we compared two spectral density
estimates, one with the data-based bandwidth selector and the other with a theoretically
optimal bandwidth (the latter is not practicable and is considered only as a benchmark). The
result is that the data-based method performs quite well and does not deteriorate, in
comparison with the theoretically optimal bandwidth, the mean squared error of the resulting
estimator.

In the next section, we describe the data-based bandwidth. And Section 3 contains the
results of a simulation study for small sample properties of the estimate.

2. The data-based bandwidth

Let X(t), t=0,%1,~, be a stationary time series with zero mean and the spectral density

=20 X exp(-A)EX(0X(s)), -® <A<,
A kernel spectrum estimate is given by

B =Kk I.(V), -© <A< @, 2.1

Here and below In()) is the periodogram of the data, defined by

n-1
1n<1)=<2nn>'1|goexp<—as>X(s)|2 -o <A< @,

Kal +)=K(+/h)/h K is called kernel, h=h. is called the bandwidth, and =* denotes

convolution.

An appealing approach to the problem of selecting h is to consider an error criterion such
as Mean Squared Error,

MSE(h)= E{ ii(M)=f(0)}?
= Bias*{ h ) }+var{ ()},

The two terms on the right hand side of the above equation admit the asymptotic
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representations
Bias*{ Ji(M) )= == K*(7"(0) YAS(K ) +o(h*)
and
2t Th TPOMR(K)+o(n TRTY) ) A0, +1

Var{ }Z(X)}={
ann R TIPOORK)+oln TR, A=0,¢1

where R(K)=fK2<x)dx, u,-(K)=ffo(x)dx.

Then the value of h which minimizes the asymptotic mean squared error of ﬁ(k) is

given by
RopM)=a(K)B(AL),F/ (X)) en ¥, (2.2)
[8IR(K )z XK1Y, A=0,n
a(K)=
[167R(K s 2(K)1Y®, L=0,+n
and

BOAMD, L7 N=(fRY (L )P,

In practice, however, the optimal bandwidth Aox(X) can not be realized since it involves the
unknown A(A) and f’(A). Thus, AX) and f’(A) should be replaced by their
corresponding estimators, f(A) and f(} ), and so (2.2) would become

Bop (M) =a(KIBCFO), F/ (M ) en ™5 (2.3)
If the second derivative of K , K" exists, then it is possible to estimate f”(\ ) by
B (M=a HK”) o*1,(\) (2.4)

where a is a bandwidth for estimating f’(} ).

The next problem is how to choose the bandwidth a. As in the case of ffh()» ), the same
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type of asymptotic representations are valid here. They are
Bias®{ 1" )}= —a*{ f¥ 00 Vb0 +ota®)

and

2nn la PAMR(K) +oln 'a™®) , A#0,%n
Var( .7(\ )=
ann la PAOVR(K”) +oln'a®), A=0,£1 .

Hence an asymptotically optimal choice of a is given by

@ oM=K Y(FONf AN, (2.5)
where
[BAIR(K') us 2(K)1Y® | A%0,21
5(K)=
[16RR(K ") w3 2(K)IY®, A=0,%x
and

T, FPN = (FO/f PN
Comparing (2.2) with (2.5) and defining
CK, )= (R(K"YR(K) } (7 (W/f P00 2
we find
a oM =h (M) PPCUK,f)
In this case, the asymptotically optimal bandwidth again require to estimate unknown

quantities f7( 1), f*(L). Since the dependency of a.x(}) on f at this stage seems to be

less crucial than the other stage, one may use some reference spectral density instead of the
unknowns. For example, one may replace f by AR(1) or MA(1) spectral density with the

parameter estimated by maximum likelilhood method. Thus if we let h o (A) be the
estimator of A in (2.1) and fres be a reference density, then

Qo (W)= Ao W)« CK frep) . (2.6)

Define
a(h)=a(h ) =h¥® C(K, fre) .
Then (2.3) and (2.6) lead us to solve ’



Nonparametric Spectral Density Estimation 235

0=a(K)B( (M), 77 sm(A)) -n ¥-p @7

to find Aox (M) using numerical methods. Detailed root finding algorithm is described in

appendix.
For practical use, a discretized version of (2.1) may be used for fast computation. Let

8=h/M and B,=[(j-1/2)8,(;j+1/2)8 ) where M is a positive integer which determines the
amount of discretization errors. Let r(x) denote the ‘rounded point of x/3', defined by
r(x)=j if and only if x€B; . Then the estimator can be approximated by

K| —’—‘X’]\'dﬂ)lnmx)s)dx.

If we take a nonnegative kemel K with bounded support [-1,1] , it is further approximated
by

3 1
)= M l:;MK( M A (r(M)+1)8) | 2.8)
Similarly, (2.4) can be approximated by

P o - —2_1_ M1 ’” l
L7 (M)=a M l=§—:MK ( 7)1;:(("0»)*’1)5), (2.9)

where 8 is defined by replacing A with a. Thus, (2.7) can be replaced by

0=a(K)B( M), 7 so(M) o n™¥® - h . (2.10)

3. A simulation results

A Monte Carlo study was carried out to evaluate the finite-sample performance of the
data-based bandwidth when estimating f at a point A using the discritized versions (2.8) and
(2.9). The stationary time series models chosen for this study were

MA(1) : X(e)=¢e(t)-Pe(t~-1)
AR(1) @ X(£)=0X(t-1)+e(e) .

The values B and ¢ selected were 0.3 and 0.6. The distribution of £(t) was taken the
standard normal, and AM=100 was used And we wused the quartic kemel,
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K(x)=(15/16 X1-x?)% (-113(x). The three points where we estimate the spectral densities

are 0, 15 and n (center, shoulder, and boundary). Figure 1 shows the spectral densities
which we considered here. We found a root of (2.10) in the range of bandwidths
[hom(A)/3, 3homx(M\)]. For the definiteness, we let Aox () =3hox(L) when (2.10) has no

root.
1.0
_— AR(1), ¢=0.6
e84 A | AR[1), ¢=0.3
—--—-- MA[1), 8=0.%
D -—- MA[1), 8=0.3
e 0.6
n
s
i
t 0.4-1
b 4
0.2
0.0 4
I 1 T T ¥ 1
0.0 0.5 1.0 15 2.0 2.5 3.0
A

Figure 1. Spectral densities of AR(1) and MA(1) processes with range [0, n]

In this study we compare two estimates fo(A) and fi(A), where f()) is obtained by
using the asymptotically optimal bandwidth hox()), whereas fi(L) uses data-based

bandwidth A ox(L). Tables 1 and 2 contain the Monte Carlo estimates of the bias and the

root mean squared error of the two estimates based on 500 pseudo time series data of size
100 and 400 where ¢ and B are 0.6. The reference density used here was AR(1) spectral
density with the parameter estimated by maximum likelihood method. The Monte Carlo
estimate of the bias (Bias) and that of the root mean squared error (RMSE) are given by
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Bias = f(A)-f(L)

RMSE =(§( Fir (V)= 2500 |

- 500 o
where f(l)=7_=:l Far(M)/500 and fu) (M) is the estimate computed from the i-th pseudo

data set. For taking into account the Monte Carlo variability, we computed the standard errors
of the Monte Carlo estimates of the bias and the root mean squared error. They are defined
by

SE(Bias)= 0 ( Bias)/Y 500

and

SE(RMSE)=(Y¥ RMSE?+ 6( RMSE)/Y 500-Y RMSE*- 6 ( RMSE)/Y500 )/2 ,

where

~2 00, - 2
o  ( Bias) =‘§;1( Faor )= f\)) /500

500
8" RMSE) = 23(( Ji) (M)-fA)*- RMSE?)’/500 .

Comparing fi (A) with %(X), A (\) shows comparable performance with % () in almost
all cases. Since fo()) is not practicable, it is recommendable to use fi(L). Also we can find

that, as n increases 100 to 400, the bias and the root mean squared error of the estimates
decrease. One thing apparent from Table 2 is that the bias and the root mean squared error
of the estimates are somewhat large when A =0 in AR(l1) process. But, it is not so
surprising since AR(1) process when ¢=06 has a peak at A =0 as shown in Figure 1.
Tables 3 and 4 show the results when MA(1) reference density is used. We get the same
lessons as in Tables 1 and 2. Table 4 and Table 5 show the results when ¢ and B are 03.

We omit n=400 cases here because we obtained virtually the same results as when ¢ and
B are 06. Figure 2 show the density estimates of the population distributions of
f(r) and fi(A) when A=15. They are based on fu, i=1,-,500. Many other cases

show similar shapes or better. The impression we get from Figure 2 is that our procedure
works quite well.



238 Kee Hoon Kang, Byeong U. Park, Sinsup Cho, Woochul Kim

Table 1. Bias and root mean squared error of data-based bandwidths and the resulting spectral density estimators

Model A n Rope(X ) ) Ropt (1) S0 e
Bias -0.39535 -0.06752 -0.03885

100 2.4027 0.40743 (.04041) (.00311) (.00517)

RMSE 0.98634 0.09703 0.12199

x (.02554) (.00331) (.00469)

Bias -0.17929 -0.04359 -0.02847

400 1.8209 0.40743 (02569) (.00216) (.00287)

RMSE 0.60179 0.06510 0.07013

(.01639) (.00236) (.00221)

Bias C1.61157 0.01129 001235

MA(1) 100 45661 0.20294 (.07906) (.00157) (.00165)
RMSE 239221 0.03639 0.03701

15 (.08664) (.00142) (.00121)

(B=06 ) Bias ~1.12306 0.00586 0.00390
400 3.4605 0.20294 (.05198) (.00096) (.00104)

RMSE 161619 0.02235 0.02351

(.05236) (00077 (.00082)

Bias 035275 0.00975 0.01868

100 0.7926 0.02546 (.01760) (.00047) (.00084)

RMSE 052849 0.01430 0.02654

0 (02672) (.00072) (.00138)

Bias 0.12353 0.00476 0.00710

400 0.6007 0.02546 (.00708) (.00023) (.00032)

RMSE 0.20084 0.00701 0.01007

{.00805) {.00033) (.00045)

Note : AR(1) spectral density was used as a reference density. Bias and RMSE are the Monte Carlo estimates of the bias and root
mean squared error, and the standard errors defined in the text are given in parentheses.

Table 2. Bias and root mean squared error of data-based bandwidths and the resulting spectral density estimator

Model ! n hon(X) ) Aopt (L) HV A0
Bias ~0.24484 0.01804 0.01308
100 2.4027 0.06217 (.02288) (.00064) (.00092)
RMSE 056735 0.02309 0.02439
x (01717) (.00118) (.00109)
Bias -0.14672 0.00825 0.00628
400 1.8209 0.06217 (.01429) (.00037) (.00046)
RMSE 0.35165 001174 0.01209
(.01187) (.00051) (.00046)
Bias 0.01229 0.03141 0.03771
AR(Q) 100 1.2506 0.12482 (.03045) (.00125) (.00247)
RMSE 068115 0.04200 0.06681
15 (.04419) (.00201) (.00335)
($=06 ) Bias -0.00799 0.01683 0.02161
400 0.9478 0.12482 (.04040) (.00120) (.00297)
RMSE 0.46774 0.02186 0.04057
{.01878) (.00099) (.00219)
Bias 0.29023 -0.21953 -0.24469
100 0.7926 0.99472 (.01873) (.01281) (.01559)
RMSE 050954 0.36092 0.42598
0 (.02659) (.01065) (01173
Bias 0.16088 -0.14636 -0.16167
s 400 0.6007 0.98472 (.01039) (.00753) (.00924)
RMSE 0.28251 0.22316 0.26251
(.01430) (.00739) (.00804)

Note : AR(1) spectral density was used as a reference density.
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Table 3. Bias and root mean squared error of data-based bandwidths and the resulting spectral density estimators

Model A n ho(X ) ity Ro(X)  fo(}) A
Bias 0.28314 -0.06752 -0.07780
100 24027 0.40744 (.00896) (.00312) (.00321)
RMSE 0.34691 0.09703 0.10591
x (.01825) (.00330) (.00376)
Bias 0.16758 -0.04247 -0.04786
400 1.8209 0.40744 (.00594) (.00191) (.00199)
RMSE 0.21394 0.06020 0.06543
(.01088) (.00230) (.00253)
Bias 1.98442 0.01036 0.01066
MAQ) 100 45661 0.20294 (.09740) (00150) (.00155)
RMSE 2.94644 0.03516 0.03620
15 (.15330) (.00127) {.00130)
(B=06 ) Bias 0.91730 0.00586 0.00847
400 3.4605 0.20294 (.07464) (.00096) (.00118)
RMSE 1.90442 0.02235 0.02788
{.12798) (.00077) (.00101)
Bias 0.32120 0.00939 0.01820
100 0.7926 0.02546 (.01696) (.00048) (.00087)
RMSE 0.49615 0.01432 0.02655
0 (.02522) (.00069) (.00138)
Bias 0.10841 0.00514 0.00713
400 0.6007 0.02546 (.00635) (.00026) (.00034)
RMSE 0.17865 0.00768 0.01035
(.00805) (,00045) (.00033)

Note : MA(1) spectral density was used as a reference density.

Table 4. Bias and root mean squared error of data-based bandwidths and the resulting spectral density estimators

Model ) n Rope(X) ) Ropt () ho) A0
Bias -0.41379 0.01804 0.01041

100 24027 0.06217 (.02458) (.00064) (.00099)

RMSE 068789 0.02309 0.02446

- (.12564) (.00118) (.00215)

Bias -0.22042 0.00827 0.00639

400 1.8209 0.06217 (.01974) (.00038) (.00070)

RMSE 0.49338 0.01182 0.01699

(.06861) (.00054) (.00143)

Bias 0.71017 0.03318 0.04371

AR(D 100 1.2506 0.12482 (.07037) (.00127) (.00226)
RMSE 1.72630 0.04367 0.06682

15 (.19793) (.00222) (.00321)

($=06 ) Bias -0.12043 0.01626 0.01210
400 09478 0.12482 (.01188) (.00069) (.00090)

RMSE 0.29175 0.02241 0.02352

(.05252) (.00099) (.00141)

Bias 1.20820 -0.22171 -0.52030

100 0.7926 0.99472 (.00648) (.01317) (.00639)

RMSE 1.21686 0.36853 0.53954

0 (.12365) (.01229) (.05056)

Bias 0.91696 -0.13908 -0.38997

400 0.6007 0.99472 (.00398) (.00744) (.00412)

RMSE 092127 0.21684 0.40070

(.07142) (.00793) (.04768)

Note : MA(1) spectral density was used as a reference density.
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Table 5. Bias and root mean squared error of data-based bandwidths and the resulting spectral density estimators

Model 2 n Boge(X) o) Fopt (L) H) A0

Bias -0.13730 -0.04069 -0.03049

n 100 2.6851 0.26897 (.04003) (.00186) (.00262)

RMSE 0.90554 0.05821 0.06598

(.03744) (.00212) (.00198)

M A( 1 ) Bias -0.49132 0.00609 0.00509
15 100 5.5695 0.16672 (.13112) (.00114) (.00128)

(B =03) RMSE 297281 0.02628 0.02902
(.12402) (.00091) (.00101)

Bias 0.86307 0.01591 0.03064
0 100 1.6364 0.07799 (.04582) (.00081) (.00148)-

RMSE 1.33970 0.02588 0.04507

(.08985) (.00110) (.00208)

Bias 0.20761 0.02286 0.02043

n 100 2.6851 0.09417 (.06212) (.00084) (.00131)

RMSE 1.40447 0.02959 0.03574

(.09559) (.00142) (.00149)

AR(I) Bias -0.41121 0.01923 0.01274
15 100 1.8796 0.15193 (.06912) (.00119) (.00166)

(=03 ) RMSE 0.89959 0.03282 0.03932
(.07347) (.00140) (.00204)

Bias 0.56424 -0.05167 -0.05645

0 100 1.6364 0.32481 (.03485) (.00314) (.00394)

RMSE 0.96207 0.08709 0.10469

(.4678) (.00284) (.00403)

Note : AR(1) spectral density was used as a reference density.
Table 6. Bias and root mean squared error of data-based bandwidths and the resulting spectral density estimators

Model A n hop (X ) o) Rope (V) A HO
Bias 050494 -0.03852 ~0.04587

- 100 2.6851 0.26807 (.02554) (.00206) (00221)

RMSE 0.76227 0.06013 0.06744

(.06644) (.00191) (.00219)

Bias 2.87756 0.00726 0.00718

MA() 15 100 5.5695 016672 (.16522) (.00121) (.00129)
(B = 03) RMSE 468282 0.02806 0.02971
(.19736) (.00726) (00718)

Bias 0.76937 0.01662 0.02827

0 100 1.6364 007799 (.04580) (.00094) (.00136)

RMSE 1.28258 0.02675 0.04152

(12013 (.00116) (.00183)

Bias -0.10602 0.02129 0.01541

- 100 2.6851 009417 (03889) (.00088) (00121)

RMSE 0.87622 0.02897 0.03105

(08153) (00131) (00113)

Bias 2.51368 0.01761 0.02051

AR(1) 15 100 1.8796 015193 (.04301) (00119 (.00133)
(0203 ) RMSE 260134 0.03206 0.03619
TV (.23706) (.00143) (.00153)
Bias 1.36585 -0.03798 003501

0 100 1.6364 0.32481 (.02231) (00323) (.00258)

RMSE 1.45413 0.08166 0.10281

(.12037) {.00255) (.00426)

Note : MA(1) spectral density was used as a reference density.
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Figure 2. Density estimates of the population distributions of f‘o(l) and fx (A). Solid curve

corresponds to fi (), dotted one corresponds to Jfo (A) and vertical line indicates the location
of the true value of AA).

T T u v T T T T T T T
(Al ] 0.15 0.2 125 6.3 [ B.40 L 1] (A1 [AH] 0.20 125 0.30
(a) MA(D) withB=0.6,2=15n=100, AR(1) reference (b) AR(1) with ¢=0.6,A=1.5,n=100, AR(1) reference

T T T T

T
0.10 (A1 0.20 0.25 Il.iq

(c) MA(1) withp=0.3,2=1.5n=100, MA(1) reference (d) AR(1) with®=0.3,2=1.5=100, MAC(1) reference
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Appendix

We describe an algorithm for finding a root in (2.7). Let (2.7) be a form of F(h)=0.

Step 1 : Give two initial values ho, hi .

Step 2: For n=12,, until |hw1-hsl or [F(hs)l sufficiently small, do

(1]

(2]

(31

(4]
(5]
(6]
(71

(8l

Calculate  hns1=hn—F(ha )(hn=h -1 )/(F (ha)-F(ha-1)) .

If hm <0 for some m , then add some increment to the initial values and do
Step 2 again.

If F(hn)F(hm«1) < 0 for some m , then apply the bisection method at
(hm,F(hm)) and (hm*l,F(hmd)).

If h obtained in Step 2 is out of the range [Aox/3,3kox ], then add some

increment to the initial values and do Step 2 again.
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