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Diagnostic for Smoothing Parameter Estimate
in Nonparametric Regression Model

In-Suk Lee and Won-Tae Jung?

Abstract

We have considered the study of local influence for smoothing parameter estimates
in nonparametric regression model. Practically, generalized cross validation(GCV) does
not work well in the presence of data perturbation. Thus we have proposed local
influence measures for GCV estimates and examined effects of diagnostic by above
measures.

1. Introduction

Smoothing splines are a type of nonparametric regression for estimators which the
diagnostic problem has received a good bit of attention. Some early comments concerning
diagnostic methods for these estimators can be found in Wold(1974). Diagnostic methods for
smoothing splines have received increasing attention in recent years.

Current diagnostic methods for smoothing spline are mostly of the case—deletion variety,
including parallels of residuals and Cook's distance measure. More detailed treatments of
diagnostic methods for smoothing splines with examples can be found in Eubank(1984, 1985,
198R), Silverman(1985), and Eubank and Thomas(1993).

By the way, the decision of the measure of smoothness for diagnostic and estimation of
regression function by smoothing splines is required. The measure is called the smoothing
parameter. The smoothing parameter acts as a tuning constant to balance the competing aims
of fidelity to the data and smoothness. Small values of smoothing parameter produce wiggly
estimates and, in the extreme case smoothing parameter is zero, a spline which interpolates
the data. Large values yield smoother estimates, with smoothing parameter corresponding to
polynomial regression.

Selecting a value for the smoothing parameter is a crucial part of the fitting process, and
automatic procedures for selecting such tuning constants based on the data are often
preferred. Li(1985), Hall and Titterington(1987), and Hutchinson(1989) have employed
generalized cross-validation(GCV) to select smoothing parameter in problems of estimation.
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The GCV estimate works well in the uniform design knots. However, Hall and Titterington
showed that GCV estimators of smoothing parameter can be slightly underestimated in both
linear ridge-regression and nonparametric regression. And results in Andrews(1989) and
Eubank and Thomas(1993) suggest caution in the routine use of GCV for smoothing
parameter selection in the presence of outliers and influential observations.

Thus, we need to use the proper smoothing parameter to produce satisfactory results. That
is, diagnostics for estimates of smoothing parameter are needed. But, no diagnostics for
smoothing parameter have been studied.

Hence, the objective of this paper is to present diagnostics for influence on an important
aspect of a fitted smoothing parameter by GCV under some perturbation schemes.

In Section 2, we introduce the spline model and derive the local influence method for
smoothing parameter estimates. In Section 3, as application for modifying influential
observations by diagnostic measures, we practically detect influential observations through a

example.

2. Model and Local Influence Measures
Consider the situation where responses yi .. ya are observed corresponding to values
t1,,tn of an independent variable which, for convenience, are assumed to satisfy
ast1< -~ <tp,<bh.
The y; and t; are related by the model,

yi= )+ ej,

where M is a some smooth regression function, the errors € ; are uncorrelated with mean zero

and constant variances O °. By smooth, we mean that M belongs to the set W2"[ab] of
functions g that, for some fixed m, have m-1 absolutely continuous derivatives and

square-integrable mth derivative g™ € [a,b).

And then, a popular estimator A based on the assumptions of above is the minimizer over

g € W2" of

n b
%;{}’j‘g(tj))z + xfa {g "™ () )Ydt, A>0. (1)

The GCV choice A which minimizes

T
er’ e

{tr(1-H(\)) 2

GCV(L\) =
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where H(}) is the hat matrix that transforms the data vector y into the vector of smoothing
spline fitted values, and _ex» = (/-H(M))_y is the vector of residuals.

2.1 Local Influence Measures

Now, by the local-influence method of Cook(1986) and Lawrance(1991), we drive diagnostics
which is identify observation that have a disproportionately large impact on the determination

of the GCV estimator X. Let Q be some open set of allowable perturbations. Suppose that the
perturbation is w and the null perturbation is w o.

In order to find direction of large local change, our first step is to approximate the actual
surface with its tangent plane at X( Wo) and find the direction of maximum slope d max On

this tangent plane.
It is easy to show that the direction of maximum slope is

d e~ 3 A( 2)

0
evaluated at 0.
The direction vector d max tells us how to perturb the data and the model to produce the

greatest local change. Thus itself is the influence diagnostic measure, and the largest

absolute components of d max identify locally influential cases.

Hence we have the following theorem.

Theorem 1. Let GCV(M w) is the perturbed generalized cross valida- tion function by _w.
Then the direction of maximum slope is given by

3icevin w)
aw’ax

d rnaxQ -
evaluated at A and Wo .

2.1.1 Additive Perturbation Case

The perturbation scheme consists of adding small perturbations to the responses, so that the
vector of modified responses is

¥w=l+yy

here, wo=(0,0,-,0) represents no modification of the data.
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Additive perturbations of the responses have been used by Emerson, Hoaglin and
Kempthorne(1984), Thomas and Cook(1989), and Lawrance(1991). Under this perturbation
scheme, the penalized least squares criterion (1) becomes

n b
min gewsl — 32w g )Y + 2 [ (g M0)ad, a0,

and GCV choose X to minimize

(y+w) TU-HO) TU-HO) yrw
{er[I-H(\])?

GCV{\ w)=

Thus,
3:Gevih w)
a w’axr

d max( Y+ w)=- at X, wo

tr[HOOU-H))
tr(I-H(Y))

-( xI-H(MWII-H(A)) %y,

It is the local influence measure under additive perturbation scheme.
2.1.2 Muttiplicative Perturbation Case

The vector of modified responses is yv»=w® y, as multiplicated data form, where ® is

Hadamard product. Here, wo0=(1,1,~,1) repres- ents no modification of the data.

Multiplicative perturbation of the responses is similar to the case-weight perturbations form,
and have been used by Pregibon(1981), Cook(1986), and Lawrance(1991). Under this
perturbation scheme, the penalized least squares criterion (1) becomes

n b
min gewsl %E(wj'yrg(tj)}"’ + XL (g () Yedel, A0,

and then GCV choose X to minimize

(w® v) TU-HON TU-HOX wey)

GCV, w) = (trlI-H(W)]} 2
Thus,
___a’cGovinw)
~ D HMU=HD) 1y 5y - (R 2y

tr(I-H(X))
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~ y®d max{ y+ w),
where D(y)=diag(y 1, ,yn).

It is the local influence measure under multiplicative perturbation scheme.

3. Application for Modifying Influential Observations
We take the true regression function by

4
u(e)=2 Zx {ajcos@n)+b jsin(2nj)}, 0<t<1,
=

with g 7=(-05,0.5,25,1.0) and b7=(25,1.0,05,05).
This regression function is discussed in Hall and Titterington(1987). In our numerical work,
this minimization was achieved using a Golden Section search.

3.1 Additive Perturbation Case

Suppose data structure is given by

yizyi+w,
where y; is observed value but contaminated by amount w; y; is the correct value and

_[wi for contaminted y
“ 10  for correct yi.

Box-plot and Stem-and-leaf plot offer a rough bound for largest components of
d max ( Y+ w).
For example, suppose that ith and jth components of d ma( y+w) have negative and
positive large values, respectively. Then we may suspect amounts w; w, and correct values
are given by,

yisyvitwi

yisyirw,
and

yk=yr for k=i j
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Figure 1. An Index Plot of Original Data
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In Figure 1, the original data are plotted against case number rather than t to facilitate

comparison with the diagnostics. Using d max( ¥+ w), we can take the cases (6,7) having the

largest values, in Figure 2 and 3.
And we can find the case 1 with largest Cook’s distance is not the same as the groups
highlighted by the d max( y+ w) diagnostic, in Figure 4 and 5.

In this case, we can obtain smoothing parameter estimate, Xo=122 x10 ' from modified

under the additive scheme and % 0=76x10 "% from original data by GCV.

Figure 2. An Index Plot of d max( ¥+ w)
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Figure 3. Box-Plot for d max( ¥+ w)
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Figure 4. An Index Plot of Cook’'s Distance

Figure 5. Box-Plot for Cook’s Distance
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3.2 Multiplicative Perturbation case

Suppose data structure is given by
yizyicwi
where

{ w; for contaminted y |
wi~= -
1 for correct y ;.

For example, suppose that ith and jth components of |dmax(w® y)| have largest values.

Then we also suspect amounts wi, w, and correct values are given by
yiz=yi/wi
yi=yilw

and yk=yk for k#i,j

In this scheme, we can get the cases (3,27) having the largest absolute values. In this case,

we can obtain the smoothing parameter estimate, *m=12x10"7 from modified data under

multiplicative scheme by using GCV, in Figure 6 and 7.

Figure 6. An Index Plot of d max( w® y)
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Figure 7. Box-Plot for d mx( w® y)
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3.3 Summary

Table 1 show the summary for each diagnostic measure. In this example, we used the

error’'s variance with 0°=05. As we can see, the estimates of variance behind diagnostic

procedures are closer to the true variance than the estimate of variance using original data.

Figure 8 represents spline fits using the original( 20=76x10"% and modified data

( Xm=12x10"7), respectively. And we can observe that smoothing spline fits under the

diagnostic procedures are less wiggle.

Table 1. Summary for each Diagnostic Measure with © =05

Measure X 52
Original 73x10°8 0412
Cook’s Distance; 710x10°8 0.410
Modified Data Additive 1.22x1077 0.513
Scheme 1.20x1077 0.510
Multipl. Scheme
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Figure 8. Spline Fits using the Original and Modified
data, respectively
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4. Remark and Discussion

In this paper, we can observe the following facts from results.
1) dmax( w® y) is proportional to d max( w+y) through y.

2) Adjustment of an amount w; in multiplicative perturbation case is easier to handle than

that of additive case.
3) Diagnostic measure, Cook’s distance in a single case deleted, can not find the influential
observations in GCV estimate.
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