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On the Robustness of Li-estimator in Linear Regression Models
Bu-Yong Kim?»

Abstract

It is well known that the Li-estimator is robust with respect to vertical outliers in
regression data, even if it is susceptible to bad leverage points. This article is
concerned with the robustness of the Li-estimator. To investigate its robustness
against vertical outliers we may find intervals for the value of the response variable
within which the Lj-estimates do not change. A procedure for constructing those
intervals in multiple linear regression is illustrated in the sensitivity analysis context.
And then vertical breakdown point of the Li-estimator is defined on the basis of
properties related to those intervals.

1. Introduction

Consider the problem of estimating the parameters of a multiple linear regression model
y=XBp+ e,

where y denotes an n-vector of response variable, X an nXp matrix of regressor variable

values with rank p<n B a p-vector of parameters, and & an n-vector of random errors.

The minimum Lij-norm estimator which is also called the least absolute values estimator
has long been considered as an acceptable robust alternative to least squares estimator,

particularly in the presence of vertical outliers which are outlying observations in the y-

direction. The L;-estimator (B) is defined by the solution of the following problem

mmlémze el (1)
where e=y-XB , and || - Il | denotes the Li-norm.

Statistical properties of the Lj-estimator have been studied extensively by Blattberg and
Sargent (1971), Kiountouzis (1973), Rosenberg and Carlson (1977), Pfaffenberger and Dinkel
(1978), Bassett and Koenker (1978), and Dielman and Pfaffenberger (1982). Bloomfield and
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Steiger(1983) describe in detail the strong consistency and some robustness properties of the
Li-estimator. A necessary condition for the consistency of the Li-estimator is proposed by
Chen and Wu(1993). Birkes and Dodge(1993) present testing of hypotheses, confidence
intervals, selection of variables, and so on with the Lj—-estimation.

The degree of robustness of an estimator in the presence of outliers may be measured by
the concept of breakdown point which is the smallest proportion of the observations that can
render the estimator meaningless. Of course, it should be mentioned that the breakdown point
is only one out of several measurements of robustness. It is well known that the Li-

estimator is robust with respect to vertical outliers, but it can not protect against bad
leverage points, and hence the finite sample breakdown point of the Li-estimator is equal t

1/n. Regardless of this drawback, Lj-estimator has received considerable attention in the
literature of the robust regression because the values of regressor variables are carefully
chosen and are usually considered as fixed numbers in designed experiments.

Therefore, we are concerned with the robustness of the Li-estimator with respect to vertical
outliers only. One approach to investigate its robustness is to construct the intervals within
which the values of the response variable can lie without changing the Li-estimates. Recently,
Narula and Wellington(1990) suggest an algorithm for finding the intervals only in case of
simple linear regression. In this article, we introduce a procedure for the construction of these
intervals not only in simple linear regression but also in multiple linear regression. Another
approach is to measure its robustness by the breakdown point. So, we propose a definition of
the breakdown point of the Li~estimator to vertical outliers - we may call this the vertical
breakdown point.

2. Algorithmic Framework of Li-estimation

This section deals with algorithmic considerations in the Li-estimation problem. The
standard method for computing the Li-estimates derives from the following linear
programming formulation of the problem (1)

miniénize (1’ e +1" e : XB+ Ine - I,e =y, e 20, e =01, (2)

where 1 is an n-dimensional vector of all ones, and the components of vector e and e~

represent positive and negative deviations, respectively.

Algorithms for computing Li-estimates have been developed by Wagner (1959), Fisher
(1961), Barrodale and Roberts (1973), Armstrong, Frome, and Kung (1979), Wesolowsky (1981),
Kim (1987), Gentle, Narula, and Sposito(1987), Sherali, Skarpness, and Kim (1988), and
Coleman and Li(1992). Although some of the special purpose algorithms take into account the
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particular features of the problem (2) in order to improve the computational efficiency and/or
numerical accuracy and stability, we shall use the basic ideas of the simplex method since the
objective in this article is not to deal with the computational or numerical problems.

A~ -

With a slight modification of the constraint set such that B= E*- B, ’l;+20, 3-20, the

linear programming problem (2) can be reformulated in the canonical form

minimize { c/ r: Ar = y’ rZO} ) (3)

r

where ¢’ =[0" 0’ 1’ 1), r =[ B’ B ' e’ e’ ], and A=[X -X I -1].
Now, the problem (3) can be solved by the simplex method. The steps of the simplex
algorithm for the computation of the Li-estimates are described below for the sake of

completeness and to introduce notation. Consider the system Ar=y, r=0, where A is an
nx2(n+p) matrix with rank n. After rearranging the columns of A, let A=[B | N ]
where B is an nXn nonsingular matrix and N is an nXxX(n+2p) matrix. Here B is called

’

the basis and N is called the nonbasic matrix. The point r* =[rg” | ry° 1 where
rg=B_1y, ry=0, is called a basic solution of the system. If rg2>0, then r is called a
basic feasible solution of the system. The components of rp are called basic variables, and

the components of rn are called nonbasic variables.

Initialization : Choose a starting basic solution with basis B.

-1
Step 1 @ Solve the system Brp=y . Then [BO y] is a basic feasible solution and the

objective value is given by zo=cs’ rs
Step 2 : Solve the system w’ B=cp’ (with unique solution w’ =cp’B !). Let a; be

the Jj-th column of A, and then calculate z;,-cj=w’ aj-c; for all nonbasic variables. Let

zk-ck= T zi-ci )
k k jER J J ’

where R is the current set of indices associated with the nonbasic variables. If zx-ck<0,
then stop with the current basic feasible solution as an optimal solution.
Step 3 : Solve the system Bsk=ax (with unique solution sx=B 'ac ). If sk< 0, then

stop with the conclusion that the optimal solution is unbounded.
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Step 4 : Here r« enters the basis and the blocking variable rg, leaves the basis, where the

index ¢ is determined by the following minimum ratio test :

Ve min Yi .
= . — s>
Stk 1<i<n Sik

where ;=B'1y . Update the basis B where a« replaces ag,, and the index set K. And

go to Step 1.

3. Robustness of the L;-estimator

In this section, we address the question of how robust against vertical outliers the Li-
estimator is. In this connection, we introduce a procedure for determining intervals on the
values of the response variable within which the Li-estimates do not change. Also we
suggest a definition of vertical breakdown point of the Li-estimator.

3.1 Procedure for Intervals of y

A procedure for constructing intervals of v is suggested on the basis of the sensitivity
analysis. Suppose that an optimal solution is obtained by the simplex method introduced in

Section 2. Let B;;t be the optimal basis of A. If the right-hand-side vector y has its k-th
component changed, that is, ;k= yx+0, then to verify optimality we need only multiply the
vector ; by B;,L.

Boky=Box(y+3h)

y +5( Bok)*

~Q
y +8b ,

where A is a vector of zeros except for 1 at the k-th position, and (B;,L)k (=b) denotes
the k-th column of B;,}t. To determine the range on ;k, we must determine when the

updated right-hand-side vector remains greater than or equal to zero. That is, yi +8b;20
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for i=1,.,n.

Case 1 : If b;<Q 8 must be such that 38< - y;°/b; for all i with b;<Q Thus, the

maximum increase in yrx=y«*+3 is restricted by

Smax=glb | - vi/bi | bi<0},

where glb means the greatest lower bound. That is, the Lj-estimates are not altered for all

values of yi+8max . If the set is empty, then the level can be increased without bound
without changing the basic variable.

Case 2 : If b;>0, then 8 must be such that 82 - y; /b;. This implies that the maximum

decrease in yx=y«+d occurs when

Smin=lub { - yi'/bi | >0},

where [ub means the least upper bound. In other words, the Li-estimates do not change for

all values of yix+38 min .

The intervals can be readily computed by any computer programs (for instance, SAS/OR or
LINDO) for the sensitivity analysis under the algorithmic framework presented in Section 2.
This procedure is illustrated as follows using real and simulated data sets.

Example 1 : A data set from Montgomery and Peck(1992, p.233) is used to illustrate the
procedure. Twelve observations are obtained on two regressor variables(temperature of the
product, filler operating pressure) and the response variable(carbonation level of a soft drink
beverage). The Li-estimates are {-124.675, 0.830, 4.760} whereas the least squares estimates
are {-147.489, 1.719, 4.557}. The lower and upper bounds on y values for all observations for
which the Li-estimates are not affected are presented in Table 1. As long as, for instance,
the value of the response variable for the first observation is greater than or equal to 1.015,
the Li-regression estimates will not change, and so on. The results show that the {1, 2, 3, 5,
8}-th values of the response variable can be moved from the fitted values to positive infinity
without altering the Li-estimates, and the {4, 9, 11, 12}-th values can be moved from the
fitted values to negative infinity without affecting the Li-estimates. These nine points are
called the nondefining observations. On the other hand, the {6, 7, 10}-th values are restricted
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Table 1 : Intervals for the values of the response variable

X1 X2 y Interval for y

31.0 210 260 [1015 + o)
310 210 240 [ 1015 + @)
315 240 1732 [15710, + o)
315 240 1560 ( -, 15710]

315 240 1612 [15710, + x)

30.5 220 536 [5333, 5.377]
315 220 6.19 [ 6.080, 6.600]

305 230 1017 [10120, + ™)
310 215 262  ( -o®, 339]
30.5 215 298 [ 2955 3.008]
31.0 225 692 ( -, 8155]
30.5 225 706 (-, 7.740]

narrowly. This implies that these three points are the defining observations which are exactly
on the Li-regression plane.

Example 2 : A data set of fifteen observations is generated by the test problem generator,
LIGNR, of Hoffman and Shier(1980). There are three regressor variables, and the
Li-regression coefficients including the intercept term are specified as {1.0, 2.0, 3.0, 4.0}). The
values for the regressor variables are generated from normal distribution with means {5.0,
15.0, 25.0} and variances {1.0, 2.0, 3.0}, respectively. Each row of the matrix X is generated
to have unique values. The errors are generated from a normal distribution with mean 0.0 and
variance 4.0. Three observations are set to be exactly on the regression hyperplane outside
the basis. The intervals for the values of the response variable are summarized in Table 2.
The Li-regression hyperplane will not change if the values of the response variable stay in
the intervals.

The results presented in Table 1 and 2 confirm the robustness of the Li-estimator to
vertical outliers. That is, the Li-estimates are not affected at all, within certain range, by
change in values of response variable.
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Table 2 : Intervals for the values of the response variable

X1 X2 X3 y Interval for y

442 1649 2533 16064 (160630, + @ )

5.12 1460 2237 14452  [144519, 144.530]
6.08 1454 2820 16957 [168.383, 169.580]
6.31 1650  30.39 18477 [184667, + ® )

491 1346 2526 15224 [152238 + @ )
4.82 1783 2314 15647 ( - | 156.691]
9.7 711 3984 19663 ( - , 201.073]
37 1093 2320 14004 (134014, + @)
4.27 1372 2536 152.14  [152.138, 152.144]
4.92 1212 2159 1335 ( -o , 133561]

6.90 1516 2846 17541 [174107, + @ )
4.68 1511 2348 14754 ( - | 149611]
6.02 1507 2588 16498 [161.763, + @ )
3.74 1761 2146 14302 ( -, 147.157]
4.33 1820 2560 16666 [166.644, 166.662]

3.2 Vertical Breakdown Point

The finite sample breakdown point of the Li-estimator is known to be 1/n, which tends to
zero for increasing sample size. However, if we can restrict the robustness of Li-estimator
only on the vertical outliers, the finite sample breakdown point of the Li-estimator may be
much greater than that value.

It is shown in the previous section that the Li-estimates do not change as long as the
values of response variable remain within the intervals. In this section, two properties related
to the intervals are verified employing some analytical arguments. One property is that at
least one hyperplane giving minimum Li-norm passes through p of the n observations. In
other words, Li-estimator has p defining observations for which the intervals are restricted
narrowly. It is well known that the problem (2) has at least one solution at an extreme point
of the feasible region. The constraint set of that problem has n equations and 2n+p
variables which are p unrestricted variables and 2n non-negative variables. If the i-th point

is not on a hyperplane, then either e; or e; must be non-zero. However, n+p of the 2n
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non-negative variables must be equal to zero at an extreme point. Therefore, n—-p points can
be off the hyperplane at the optimum. This property implies that the Li-estimates are
completely determined by only a subset of p observations, and small change in the value of
response variable for the defining observations may substantially influence the Li-estimates.
Another property is that Li-estimates are not altered by changes in the values of the
response variable associated with n-p nondefining observations as long as those
observations remain on the same side of the Li-regression hyperplane. In particular, the
values of y corresponding to the nondefining observations can be taken from the fitted values
to positive or negative infinity without changing the Li-estimates. This property can be
verified by the discrete approximation approach as follows. {This part has also been proved

by Dodge(1990).] Suppose E. is the optimal solution of the Li-estimation problem (1). Let x;

be the i-th row of X, 37;'=x.f B, and ej=yi- 37:‘. Now we have to prove that the

optimal solution B is also the solution of the problem

o e a n s A
mngze S lui-xi B @

where ui2 y; for i€L L=1i; e;>0}, and u;< y; for iEM, M= i e;<0}.
Define fi(B)= lyi-xi BI, g(B)=lui-xi BI, and AB)=24(B), g(B)= 2guB).
Then the problem (1) and (4) can be simply expressed, respectively, as

~

min iﬁr\nize 8

~

min l!\nlze g( B ) .

and A

A%

It is known that B minimizes the convex function f) if and only if Q€ 8 f ’l;.), where
af ’ﬁ') is a subgradient of f at 3‘. Therefore, to show that B‘ is also the solution of the

problem (4), we have to show that 3]( 'ﬁ')g dgl a‘) , and hence 0 € 3 g( B‘).

Since ﬁ(B) and gi('ﬁ) are convex functions, it is obvious that @ j(,i§)=z:I E] ﬁ(B) and
£

ag(’ﬁ)= Z} ag;(,li). So it suffices to show that

afl Brcagi B (5)
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The subdifferential of f at B' is calculated, from the definition of f;’(lﬁ), as

v (-Mix;i if ei=0

afi( B >=[ i e

i Nixi if ei=0,

where M;=sign(e;), and -1<\;<1. Similarly, we readily obtain that

~s —n;x.: if u;- ﬁ'#O
agi( B )={ ; Vi
& Vixi if ui- 31 =0,

From the above results, we can prove the relationship (5) as follows : i) If e;>0 and
ui- v >0, then af( Bl=agi B). i) If e>0 and ui- v =0, then
af( BHeagi( B). i) If e/<Oand ui- vi <O, then af( B)=2agi( B). iv) If e/<0

and ui- y; =0, then 3f( B)c agi( B).

This property implies that Li-estimation is unaffected by any change in the data when the
values of regressors remain the same and the y-values of the nondefining observations
change so as to maintain the same signs of the residuals.

Consequently, the finite sample vertical breakdown point of the L;-estimator is at most
(n-p)/2n. Taking the limit for n—®™ with p fixed, we find that the vertical breakdown
point of the Li-estimator is as high as 0.5 which is the highest possible value.

4. Concluding Remarks

An attempt has been made in this article to assess the robustness of Li—estimator by
constructing the intervals for the wvalues of the response variable within which the
Li-estimates are not affected, and by measuring the breakdown point with respect to vertical
outliers. From the viewpoint of vertical outliers only, Li-estimator is not less robust than
other high breakdown point estimators such as the least median of squares, repeated median,
and least trimmed squares estimators. It is known that a great deal of computation (for
instance, 4833 seconds of CPU time for the exact least median of squares estimation of
Hawkins-Bradu-Kass data on 486 IBM-compatible microcomputer with MS-FORTRAN
compiler) is required for those high breakdown point estimators which are widely used in the
robust regression. In particular, the computer program PROGRESS provided by Rousseeuw
and Leroy(1987) for the LMS-estimation adapts the approximation methods, which are the
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faster version and the extensive search version, in order to save the execution time for large
data set. However, the estimates obtained by PROGRESS have undesirable features in terms
of numerical accuracy. On the other hand, the Li-estimation requires less computation than
the least median of squares estimation, and it yields exact estimates with no computational
complexity. Moreover, statistical inferences on the Li-regression have been developed relatively
well. In this context, Lj-estimator may be preferred when data sets are obtained from
designed experiments or verified not having leverage points by the outlier detection procedure.
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