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Test of Hypotheses based on LAD Estimators
in Nonlinear Regression Models

Seung Hoe Choi, Hae Kyung KimD

Abstract

In this paper a hypotheses test procedure based on the least absolute deviation
estimators for the unknown parameters in nonlinear regression models is investigated.
The asymptotic distribution of the proposed likelihood ratio test statistic are
established both under the null hypotheses and a sequence of local alternative
hypotheses. The asymptotic relative efficiency of the proposed test with classical test
based on the least squares estimator is also discussed.

1. Introduction

We consider the following nonlinear regression mode
yi=fx,00) + &4 t=1,.,n, (1.1

where y. is the tth response, x: is the tth input m-vector, 8,is p-vector of unknown

parameter, f: R‘XR’—R is a continuously differentiable up to of order 2, and &: are
independent and identically distributed unobservable random variables with finite variance.

Let 8 be the set of possible values of unknown parameter 8, and be compact subset of
R”. The least absolute deviation (LAD) estimator 6, of 8, based on (x:y:) is a vector

which minimizes

Dn(®)= - S lye-fixo8)l. (1.2)

t=1

A statistical problem is make inference about 8 by estimating and hypothesis testing. The
problem of testing hypotheses about the unknown parameter 8, in linear model has been
investigated based on the LAD estimators by Mckean and Hettmansperger (1976, R-analysis),
Koenker and Bassett (1982, Lj-analysis) and some others. For nonlinear model, Gallant (1987,
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La-analysis) and Kim (1989, R-analysis) studied testing hypotheses about unknown parameter

8,.

Most of theoretical results for nonlinear regression models are asymptotic due to
non-linearity. Complete information on the asymptotic properties of a test is provided by its
asymptotic power. However, the limiting distribution of the test statistic under the alternative
hypothesis is difficult or even impossible. Therefore we consider the sequence of local
alternative hypothesis. Such local alternative tends to the null hypothesis as the sample sizes
increaseing. For examples, see Koenker and Bassett (1982) and Kim (1989).

In this paper, we investigate the asymptotic distribution of the likelihood ratio test statistics
based on the LAD estimator in section 2 and examine the asymptotic relative efficiency
(ARE) of the proposed test with respect to the classical test based on the least squares (LS)
estimator in section 3.

2. Asymptotic Distribution Of Test Statistics

In this section we propose the likelihood ratio test statistics and investigate limiting
distribution of the test statistics not only under the
null hypotheses but under alternative hypothesis in model (1.1).

Let h: RP"—R? be a function such that the matrix function H(8), H(8)= [ ] o
axXp

is continuous in 0 and H(B) has full rank q. Our interest is to test the hypothesis

o' h(B)=0 against H,: h(9)=77,-1' 2.1)

where YERY Ifh is a linear function about 6, there exists a gXp matrix R such that

h(8)=FR6. Hence, test of linear hypothesis
Hy. R8=7v against A @ ROy
for linear model is a special case of (2.1). To simplify the notation, we denote,
HO= K508, VE®=[ T f®)] . Tu®)= - Suir(®) —%- (8),
pxD) =1 i

where W(x)=1,0, or -1 according as x>0, x=0, or, x<0.

Let (R™, A, Px) denotes the probability space. Throughout this paper we make the

following assumptions on model (1.1).

1! Vn(90)=% tZIV £:(8,)V T£(8) converges to a positive definite matrix V(8) n—o.
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A2 : € has continuous density function g(x) such that G (x)=g(x) and G(O)=—%-uniquely.

A3z Px{x€R™ | fix, 8,)=fix, 8)}>0 for each fixed 0,#6.

Aq4: There exists a fixed YER? such that h(6)=7Y;- for any sample of size n.

The likelihood ratio test statistics which is based on the difference between sum of absolute
residuals, r:=y:f(8), in the restricted and full model is defined by

T=2n1{D(8%) - D6,
where 8% minimizes Dn(8) subject to h(8)=0, and 1=2g(0). To derive the asymptotic
distribution of the test statistics T, we need the following quadratic function

Qn(0)=Dn(8,)+(8-8,)77.(8,)+g(0)(8-8,)TVA(8,)(8-8,), (2.2)

where Jn(05)=[J ni(0,)] (px1). The following lemma shows that @Q.(8) provides a useful
approximation to Da(8) and explains the relationship between D.(8) and @.(8). The proofs

of the following lemmas are given in Choi and Kim (1994).

Lemma 2.1 Let S={8,€8 : Vnl6,-6,/<M} for any M>0. Suppose that the assumptions
(A1)-(A3) are satisfied for model (1.1). Then we have

{i} Sups|Qn(8s)-Dn(B8,)l=0,(n""),

{ii} @n(B8,)-Dn(B,)=0(1)
for B,€S.

Let 6, be any vector value which minimizes @Qn(8). The existence of 6, results from
continuity of @»(8) and compactness of parameter space 8. The next result concerns with

the asymptotic equivalent of 6, and 6,

Lemma 2.2 Under the assumptions (A1)-(As3), Yn(6,-6,) converges in probability to zero.

In following lemmas we consider the strong consistency and the asymptotic normality of

LAD estimator 8,. The proofs of the lemmas are given in Kim and Choi (1993).

Lemma 2.3 Suppose that the assumptions (Ai1)-(A3) are satisfied in model (1.1). Then

the LAD estimator 6, converges almost surely to 8,.
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Lemma 24 Under the same conditions of lemma 2.3, Yn(6,-6,) converges in distribution to
a p-variate normal random vector with mean zero and variance-covariance V_l(Go)/Tz,
denoted by N(0, V "1(8,)/1%).

Let 67 and 8% be the vector value which minimizes of Da(8) and Qn(8), respectively,
subject to h(8)=0. In the next lemma we consider the asymptotic properties of B/f and B:ﬁ‘.

Lemma 25 Under the assumptions (A1)-(A4), we have that Gﬁ converges almost surely
to eo.

proof From Bolzano-Weierstrass Theorem, the sequence {975) has at least one limit point
8°. Let {B’H,:.} be a subsequence of {67} which converges to 6°. It is sufficient to show

that 8°=8, Kolmogolove's SLLN implies that Qn(8) converges almost surely to

Q(8)=g(0)(8-80)TV(8,)(08-80)+Y, where Y=% iE(IE:I)"’O(l). Since

t=1

1Q n (870 - Q(8°1< 1Q n( 87 - QUM +1Q(8™) - Q(8°),
we have
Q(8°)= im @ n(8%)< lim @ n(B0)= Q(80).

On the other hand, Q(8) is a strictly convex due to

(81-82)T{V Qn(81) -V Qn(82)} =1(81-82)TV(8,)(8,-82) >0.
Hence, the lemma follows from the assumption A..
Lemma 2.6 Under the same conditions of lemma 2.5, we obtain

(i} Qn(82)-Quba)=05(n™"),

i} Qu(BM-Qu(8D=0,(nh).

Proof In virtue of Linderberg Central Limit theorem, we have

VrJ(8,)= 71,1- litv(a,)w,(ao) 4 N0, V(8o)).

1

From (2.2), we have
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n{Q@n(87) - Qn)} =¥n(6,-8,)"VnJa(8,)
V(05— 07 Tg(0)Va(80) (Vn( 6,-8,)-Vn(6,-80) ).
Hence, the proof follows from lemma 22, lemma 2.3 and Slutsky theorem. An analogous

argument implies that @a( 60 -Qu( B =0,(n"L). This part is omitted here.

The main result of this section is the asymptotic behavior of T. In the following theorem
we derive the limiting distribution of T.

Theorem 2.7 Suppose that the assumptions (A1)-(A4) are satisfied in model (1.1). Then

the test statistics T has asymptotically a noncentral chi-square 1%(q, \) distribution with q

degree of freedom and noncentrality )\, where A= %-TZYT[HV_IH T]_IY. Under the null

hypotheses, we have A=0.
Proof Let B,= {Dn( B/E)_Dn( §,)}. Then we can rewrite that

Bo= (D05 -Qn(65) )+ {QnBD) - Qu( 0D} + {Qn( 6D - Q(6:))
+{Qu(B)-Qn B} + {Qn(8)-D (6 ).

By lemma 2.1 and lemma 2.6, we have
nBa=n{Qn(81)-Qn(62) ) +0,(1).

From (2.2) and first order Taylor’s theorem, we get

(8 -67)=1 "'V, (8,)V Q.80 (2.3)

Due to second order Taylor's theorem and (2.3), we have

Qul 8- Qn( 67)= 5 (82- 67 [TVa80))( 6767

L 970 (V8. V @u( 8.

By similar method, we obtain
VQu( 8= VQn(B0)+TVa(8,)(83-80).
Thus,
HViN8,)V Qa8 = HaV ' (8,)Ta(8,) +TH(07-8,) (2.4)

= FV, M8, Ja(8,)+TL (BT -h(8,)],
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where Hn= V Th(8},) (¢x». From (2.4), we have
VRvQ.(80)=HI [HV 8 HE 1 1 HV1(86)Vn v Q.81
= HI LWV U8 HY 1 T Y 1(80)Vn S (80)

~tHy [V (80)Hr 17Vnh(8,).
Moreover, by Linderverg Central Limit Theorem we have
VnJa(80) & N(O, V(8,)).
Hence, from (2.5) we get

VnvQ.8% 4 N [-tH™(HV 'HD) Y, HT(HV 'H) 'H 1.

The proof follows the fact that H "HV 'H)'HV ! is idempotent matrix.

If the density function g(x) of &, is known, we reject or accept
Ho: h(8)=0 according as T2 or Sx%-o(q)

with the d level of significance.

In the case where there is a nuisance parameter in the test statistics T, we need to have
a consistent estimate of 1, i.e. 1=2g(0). Now we introduce consistent estimator of <.
Suppose we have a sample of observation Xi,..,X» from a population with density g{(x).

The Kernel estimator is defined by

1 <
gn(x)= p— zle[

Xi—x
“n )

where M, is a sequence of positive numbers, and K is a Borel measurable function satisfying

K20, fK(x)dx=1 (See [2D).

. . . T
Specially, we can construct the following estimators of g(0)=—‘2—:

6,
52

ta= (0= = 2 K{
The following theorem shows that T, is strong consistent estimators of g(0).
Theorem 2.8 Suppose that the assumptions (A1)-(A3) hold for model (1.1). Let the Kernel
zK(x) satisfy the a-Lipschitz condition with some a>0 (i.e,K(x)-K(y)ISCQx-yl*) and

let M, satisfy limM,.=0 and l{r&nﬂﬁ ©, Then T, converges almost surely to g(0).
n—m
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Proof Let ¢>0 and M,= max 1gk5p‘{—a—aé-k-f,(-é—n)}, where

8_n=(1—k)80+16:, 0<A<]. Using h oder inequality, we have

[£n(0)-gn(0)| S —S71 m Zlﬂ(g\) - (B ®

-
m

— S 163801 33 ( 31— (B

a

S —= rm““ 16,-801"p ™ MY,

a1
for >0, and m>0 such that '%4'—;1"1 Let Un=(c®p ™My ', For sufficiently large N,

we have
1 A
a 1+ a

P{Supnzn | @n(0)-gn(0)I>€}< P{Supnon | 62-801>€ “h, *Un).

The proof follows lemma 2.4 and the condition on M.

3. Asymptotic Relative Efficiency

In this section we compare the efficiciency of the proposed tests with classical tests based
on least squares estimator and show that the efficiency is the ratio of the asymptotic variance
of the LS estimator and the LAD estimator.

n - .
It is well known that O\f:= % lz_:l(yrfz( 8,))% is strongly consistent estimator and

Yn(8,-8,) % N(0, 0’V "1(8,)),

where 0, is least square estimator in model (1.1). For the ARE of proposed tests, let us
denote

SA(87)=min e — g<y, £(8)?

and

Sn(8%) =min a.,"rll- g(y,-f,(e))z.

We can derive that S=no [S,(8,)-S.(8%5)] converges to x*(g, M) where
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)‘=—%'°-27T[HV_1HT]_IY, where 0 is the variance of the error &: (See [3]). The ARE of

the proposed test statistics T to the classical test statistics S is ratio of the noncentrality

parameter of the limiting 1% distribution. This is the ratio of the asymptotic variances of the
LAD and LS estimator (See [4]). So we have the following theorem.

Theorem 3.1 Under the same conditions of theorem 2.7, the asymptotic relative efficiency of
the T with respect to the S is T %6° which coincides with the ratio of the varience of

sample median and mean from the error distribution G(x).

Theorem 3.1 implies that the test statistics T based on LAD estimator is more efficient
than the test statistics S based on LS estimator whenever the error distribution is
heavy-tailed distributions and have peaked density at the median, such as Cauchy,
double-exponential, logistic distribution etc.
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