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Abstract

Many measures to detect multicollinearity in linear regression have been proposed
in statistics and numerical analysis literature. Among them, condition number and
variance inflation factor(VIF) are most popular. In this study, we give new
interpretations of condition number and VIF in linear regression, using geometry on
the explanatory space. In the same line, we derive natural measures of condition
number and VIF for logistic regression. These computer intensive measures can be
easily extended to evaluate multicollinearity in generalized linear models.

KEY WORDS: linear regression, logistic regression, multicollinearity measures,
condition number, variance inflation factor, random permutation.

1. Introduction

Multicollinearity is one of the major problems in linear regression. It inflates the variance of
estimated regression parameters and makes the parameter estimates highly sensitive to
small perturbations in the data. So multicollinearity has long been recognized as a potential
source of problems in the estimation, testing and interpretation of linear regression parameters.
Among measures to detect multicollinearity in the data, condition number KAPPA and
variance inflation factor VIF are most popular(Belsley et al., 1991), although it is not easy to
interpret condition number in statistical contexts(Stewart, 1987).

Recently, the multicollinearity in generalized linear model has received a growing concern of
statisticians. Mackinnon and Puterman(1989) and Weissfeld and Sereika(1991) proposed
condition numbers for generalized linear models in a frame of linear regression with individual
weights. We will return to their measures in the last section. Also, Segerstedt and
Nyquist(1992) suggested a geometrical approach to study the mechanism which determines the
condition of data matrix in generalized linear model. In this study, we will deal with the same

topic, but in a different way leading to naturally interpretable measures.
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2. Multicollinearity Measures for Linear Regression

We will consider a standard linear regression model
y=d+XB+e , € ~ N0,

where y is a size n vector of dependent observations, X is an nXp matrix of explanatory
observations, and so on.

For the moment, we assume that X is centered for notational convenience. We may
observe that the variance of estimated W (=a+x'B) is

Var(Mlx) = ¢*(l/n + x"(X'X) %) ,
which achieves its minimum at x =0 . Now, examine the variance trace Var(Mlx.) of the

estimated linear predictor 7 when x. travels along an ellipsoidal boundary
E: xi D _x'lx Xe = C

where D «x = diag( X'X) , sharing the same diagonal elements with X‘X, ¢ is a constant,
Observe that the ratio of the maximum to the minimum "variance gain”, i.e.

Max s.ce Var( 0 Ix.) - Var( 0 10)

Min y.ce Var(n [x. )= Var( 7 {0)

Max x.ee X (X'X) 'x.

Min r.ee x2(X'X) 'x.

Max .. u'DY(X'X) 'D%u

Min yy-c u'DYE(X'X) "D u

is equal to the ratio of the maximum to the minimum eigenvalue of
D (X'x)! D'
Thus, we may define a multicollinearity index KAPPA in linear regression by the condition
number, ratio of the maximum to the minimum singular value, of the centered-scaled matrix
X (=XD¥#
This leads to a relationship
KAPPA = p* |
which assigns to KAPPA? a useful statistical meaning - the "unbalancedness” in variance
gain of the estimated linear predictor 7 on a regulated path in the explanatory space.

On the other hand, variance inflation factor(VIF) can be formulated as the "relative
variance” of the current estimate B ; compared to that in the ideal setting for the jth
explanatory variable under a certain restriction. Hereafter in this section, we will use
changed notation for X: it is not pre-processed for centering. Define

Var ( B, ix'; - x’ - x?)
Min s Var (B} ix',-- x™,--x?)

VIF’ = . J=1l;p.
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where x’ (or x*) is the jth column of X(or X*) and S’ is a sphere for the jth explanatory
variable. More specifically,
ST nxMu=ux’,
We can easily show that
VIF' =1/(1 -R}) , j=1;-p.

where R? is the coefficient of determination when x’ is regressed on x'--x/! x/*1 - x*.

3. Generalizations: The Case of Logistic Regression

Consider the binary response
yi ~ Bernoulli(pi), 0<p;<1, i=1,n

For the p; part, set the logistic model with linear predictor :
pi=exp(m)/[1+exp(n;)], ni=a+xiB
Generalized linear model methodology tells us that(McCullagh and Nelder, 1989)

(g) ((1:X)'Dy (1:X)71:X)'Dy 2,
where z is the adjusted dependent observation vector and
Dy = diag(w,, ", ws) , w; = ;’7\, (1- 13\, A N=a+xiB
For the moment, we assume that the columns of X are centered with weights w, -, wn. .

To define condition number, we use "variance gain” concept for m, as follows: The ratio of

the maximum to the minimum ”“variance gain” is given by

Max .ct Var(1 Ix.) - Var(7 10)
Min xet Var(n |x.)-Var(n 10)

where
E:xiDiux. = c
and D wox=diag (X'D,X) . Using the fact
Var(m 1 x2) = 1/ Hw) + x4 (X DuX) k.,
we can show that
p = KAPPA® ,
where KAPPA is the condition number of DY* XD Y2,, a specially weighted centered-scaled
matrix of X,

Variance inflation factor can be similarly defined as in linear regression. With X for the
notation of uncentered original matrix of explanatory observations, define
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Var (B ix' o 5l x?) i
Minx'iesi Var(B; ;xl,"',x.","',xp) ’ J Y A

VIF' =

But in this case, seemingly it is very hard to obtain VIF exactly. However, we may obtain
its approximation by Monte—-Carlo generation of random permutations of elements in the j-th

predictor vector x’. That is, we replace "minimization over S’ " in the denominator of VIF by
“minimization over P4 ", where Pf is the set of N random permutations of n observed values
for the f~th explanatory variable :

Ph i (xi, x5, xwj) is a random permutation of ( Xij,"*", Xij, """, Xnj)

More specifically, approximate VIF'’s are obtained as follows: For the case j=p, without

loss of generality,

STEP 1> For a given design matrix (1:X) and response y, calculate MLE d and B by the

IWLS algorithm. Then its variance is approximately

Var(g‘) = ((1:X)'Du(1:X)!

STEP 2> Generate a new design matrix
X = (xPx?,

where x™ is a random permutation of x*. Suppose that the responses are to be

generated from the logistic model initially fitted (with d and B as model
coefficients).

STEP 3> The new estimates da° and B° have approximate variance
Var(“.) = ((X)D - (1:X7) !
B
where
Dy = diag(wi,~ws) , wi =pi (1-p), nj=d+xi'B
and x;'is the i-th row of X".

STEP 4> Repeat STEP 2 and STEP 3 N times. Finally compute

2 1 p-1 _p
Var ( B; . x,,x" " x")
. ' 1~
Min e e pg Var (B} ix',-,x7 '\ x™P)

VIFf=

as an approximation of VIF?,

In the next section, we will see that how such approximate VIF's are converging to some

limits, as the number N of Monte-Carlo permutations increases.
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4. Numerical Illustrations

As an illustration for the case of linear regression, we consider the Aerobic Fitness
Data(SAS Institute, 1991), in which aerobic fitness is measured by the ability to consume
oxygen. Consider the following linear regression model:

y = a + Bixy + - + Bexg + £

where y is the dependent variable OXY, and xi, -:-, xs are explanatory variables AGE,
WEIGHT, RUNTIME, RSTPULSE, RUNPULSE, MAXPULSE. The number of observations n
is 31.

Table 1 lists VIF’s and their approximations with the number N (=30, 100, 200, 1000) of
Monte-Carlo permutations. We can see that approximate VIF's are getting closer to the
exact VIF's as N increases. In this case, N = 100 seems working well.

Judging from condition number KAPPA=6.53, which can be obtained conveniently by SAS
PROG REG with COLLINOINT option, the multicollinearity seems quite mild. However, we
may note that VIF's for two variables RUNPULSE and MAXPULSE are of the magnitude 10,
indicating the possibility that these two are not functioning independently in linear regression
model.

Table 1. Variance Inflation Factor(VIF) and its approximations
in linear regression of the Aerobic Fitness Data

Approximate VIF
Variables VIF N'=30 | N=100 | N=200 [ N=1000
AGE 1.5128 | 1.4768 | 1.4927 | 1.4927 | 1.5029
WEIGHT 1.1553 | 1.1506 | 1.1506 | 1.1506 | 1.1506
RUNTIME 1.5908 | 1.5142 | 1.5510 | 1.5654 | 1.5751
RESTPULSE | 1.4155 | 1.3640 | 1.3868 | 1.4015 | 1.4015
RUNPULSE 8.4372 | 8.3968 |8.3968 | 8.3968 | 8.4152
MAXPULSE 8.7438 | 8.3964 | 8.5014 | 8.6679 | 8.6685

* N is the number of Monte-Carlo generated random permutations for each predictor.

As an illustration for the case of logistic regression, we consider the Cancer Remission
Data(Lee, 1974) which consists of patient characteristics and a clinical outcome whether cancer
remission has occurred. The response variable is REMISS and explanatory variables are
CELL, SMEAR, INFIL, LI, BLAST and TEMP.

Consider the logistic regression model

log p/(1-p) = a+Pix;+- +PBexs
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where p is the probability of remission occurrence, and xi, -, xs are the explanatory
variables from CELL to TEMP. The number of observations n is 27.

We calculate B by the iterative weighted least squares(IWLS) algorithm(McCullagh and
Nelder, 1989), the diagonal matrix D. of case weights wy,---w, , and, finally, the singular
value decomposition of DY X D Y%, from which KAPPA = 4870 is obtained. Judging from
the condition number, we may suspect that the data in hand suffers from the multicollinearity.

In Table 2, approximate VIF's from N(=30, 100, 200, 1000) Monte-Carlo permutations are
listed. We can see that the VIF’'s for CELL, SMEAR and INFIL are very large. So we may

conclude that harmful effects from data ill-conditioning appear in regression coefficients
corresponding to those three variables.

Table 2. Approximate VIF in logistic regression of the Cancer Remission Data

Approximate VIF
Variables N=30 | N=100 | N=200 | N=1000
CELL 16.876 | 21.142 | 21.142 | 22.290
SMEAR 46.501 | 47.992 | 50.633 | 54.943
INFIL 44.141 | 44.141 | 44.141 | 46.823
LI 1.908 | 1.971 | 2.388 | 2.388
BLAST 5939 | 5939 | 6.007 | 6 652
TEMP 1.865 | 2.065 | 2.139 | 2.162

* N is the number of Monte-Carlo generated random permutations for each predictor.

5. Concluding Remarks

In this study, we derived multicollinearity measures such as condition number and VIF for
logistic regression that can be applied to generalized linear model of McCullagh and
Nelder(1989) in a natural way. We would like to add two remarks.

In the same notations of Section 3 but with nX(p+1) matrix X that is not column-
centered, Mackinnon and Puterman(1989) defined condition number for generalized linear
models using extreme singular values of DY?X , while Weissfeld and Sereika’s(1991) condition
number was obtained from those of DY’ X DY, that would be the same matrix as ours if X
is column-centered at respective weighted means and of the order nXp, not containing the
column of 1’s. Both did not consider VIF. In contrast, we proposed a working definition of
VIF.

Although our multicollinearity measures need some computations, it makes no serious
problem even with personal computers. More details were studied by Lee(1994) in his
doctoral dissertation at Statistics Department of the Korea University.
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