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Graphical Descriptions
for Hierarchical Log Linear Models

Hyun Jip Choil and Chong Sun Hong?

Abstract

We represent graphically the relationship of hierarchical log linear models by
regarding the values of the likelihood ratio statistics as the squared norm of the
corresponding vectors. Right angled triangles, tetrahedrons, and modified polyhedrons
are used for graphical description. We find that the angle between the two vectors
depends on the coefficient of determination and the partial coefficient of determination.
These graphical descriptions could be applied to the model selection method.

1. Introduction

There have been several attempts to plot the properties of contingency tables. Fienberg
and Gilbert (1970) developed the geometry of measure for 2X2 contingency tables, which
allows to visualize the properties of the various models in terms of the loci of the tetrahedron.
Goodman (1991) reviewed several plots for identifying associations in log linear models. For
multi-way contingency tables, Friendly (1994) developed Mosaic display. On the other hand,
for the interpretation of the relationships among the effects of the terms in a given log-linear
model, a simple and undirected graph which is called an association graph has been explored
by Darroch, Lauritzen and Speed (1980), Goodman (1971, 1973) and others. By this
association graph, they also defined the class of graphical models. And Edwards and Kreiner
(1983) gave an overview of the use of graphical models which are generated by the graphs.
They, especially, suggested strategies for model selection based on this class of models.
These previous works have been studied to explain interactions within certain log linear
models with undirected graphical representation. For a given model, the association graph
plays an important role in describing the relationship among main factors including
interactions by using points and lines which connect points. However, we have not stressed
the measured degrees of associations and the magnitudes of the goodness of fit statistics.

In this paper, we propose some graphical descriptions to examine the relationships of the

likelihood ratio statistics, Gz, corresponding to several hierarchical log linear models, so that
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we can evaluate visually the relationships among log linear models. In order to plot the
relationship of two hierarchical log linear models, right angled triangle is used. We adapt
the shape of tetrahedron for three log linear models. And for more than three log linear
models, some polyhedrons are modified to plot. The partial coefficient of determination for
hierarchical log linear model is suggested in this paper. Both values of the well known
coefficient of determination and the proposed partial coefficient of determination are found to
depend on the magnitudes of angles which consist in the proposed plotting shapes. Those
are discussed in the following section.

2. Graphical descriptions

Consider models (a), (b) and (¢) such that model (a) is the special case of model (b) which
is the special case of model (c). And define G?%(a), G*(b) and G*(c) as the likelihood

ratio statistics for models (a), (b) and (c), respectively. In this paper, our attention is
restricted to hierarchical log linear models for complete tables. Under this hierarchical

structure, it satisfies that G *(a) 2G%(b)2G%(¢). First of all, we consider only models (a)

and (b). For model (a) and (b), we can have an equation

GYa) = [G*(a)-GYb) 1+ GUb)
= Gialb) + GX(b) . (1)

From this partitioning, G(a) and G*(b) are the variation for model (a) and model (b),

respectively. And the first component of the RHS in equation (1), Gz(alb), could be

regarded as the improved variation explained by model (b) from model (a). Now we can
define three components in equation (1) as the squared norms of the corresponding vectors

Va, Vas and Vyp, respectively. Let us denote

Vd? = G¥a),
WVasl® = G¥alb),
Vsl? = GXb) .

With these vectors, we may draw a right angled triangle like the one in Figure 1. All
information concerning the goodness of fits for models (a) and (b) can be obtained simply by
comparing the lengths of the vectors Vo, Vs, and Vas . We note that the angle 0

between two vectors V. and V) satisfies
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cosB = % } 2

From the right angled triangle in Figure 1, we can see that the shorter the length of the
vector Vp is, the longer the length of vector Vas, and the larger the value of angle 8.

The large angle 6 means that the length of the vector Vs is relatively shorter than that of

vector Ve, so that we can say that model (b) may fit better than model (a) does, and the

variation due to the difference between model (a) and (b), G?*(alb), may be significant.

Therefore through the right angled triangle, we can identify not only the goodness of fits for
each log linear model but also the difference between goodness of fits of model (a) and (b).

Vap

A"
( Figure 1) Right angled triangle for two hierarchical models

Now, we regard model (a) as the smallest log linear model, e.g. complete independence

model. Then the coefficient of determination R? which is defined by Christensen (1990) for
log linear models could be considered with angle 8 of this triangle such that

2y _ v _G(b)
R°(b) =1 )
2
=1~ :“ib:z = 1-cos 8
= sin% . (3)

If we regard model (a) and model (b) in (1) and (3) as reduced model and full model,
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respectively, R*(b) could be the generalized coefficient of determination suggested by

Anderson-Sprecher (1994) in regression analysis. This form emphasizes that R? is a model
comparison like the right angled triangle.

As in the regression, the value of R? gets large as number of parameters in a log linear

model increases. So we can adjust R? by the number of degree of freedom for the models

of interest as
ds

RZ;i(b) =1- - [1- R%(b) ]
_ . _Gib)/ds
T /d, @

where do and d» are the degrees of freedom for model (a) and model (b), respectively.

The shape of right angled triangle does not considered the degrees of freedom of the
corresponding log linear models.  But with the adjusted coefficient of determination, we can
make a better interpretation of the relationship of the two log linear models.

Now examine the relationship among model (a), (b), and (c). With equation (1), we also
obtain the following :

G*a) = G¥alc) + G¥¢)
G*(b) = G*(blo) + G* (o) . (5)

Each equation brings up the image of a right-angled triangle, so that three equations in (1)
and (5) could be made up to a tetrahedron like the one in Figure 2, where we denote

G¥ale) = IWVad? G¥blc) = Vud? and G%(c) = IVd2.

We can state the graphical interpretation about the shape in Figure 2 as we did in Figure
1. With this tetrahedron, the relationship between model (a) and (b), and model (a) and (c)
can be described by examining vectors Vg and Vg.. Moreover, the two angles between

vectors Vo and Vs, and Vs and V. could be explained by extending equations (2) and (3)

as the following :

|Vb| - IVcI
cosf = 7R cosB s = 2

R%b) = sin®1 , R%*c¢) = sin’8; . (6)
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(Figure 2) Tetrahedron for three hierarchical models

Now we can set up the following equation from the relationship in (5) and (6),

2

20 N _ p2py =
R(¢c) - R°(b) (@)

Since G%(blc) is the. improved goodness of fit by model (c) from model (b), R%¢) - RUb)
means the proportion of the variations explained by the difference of the two models (b) and

(¢c). Therefore R?(c) - R*(b) could be regarded as the partial coefficient of determination
for models (b) and (c), and we will denote R%(blc).

Definition 1
The partial coefficient of determination for model (b) and model (c) is defined as

G(blc)

2 -
Re(blc) = Gz(a)

If the value of R%(blc) is too large, then the difference between the goodness of fits of

models (b) and (¢) would be significant. And we might say that model (c) fits better than
model (b) does. We note that the partial coefficient of determination can be also obtained by

the difference between R%(b) and R*(c) :

R¥%(blc) = R¥c) -R¥b) . (8)

And we could also adjust the partial R? for models (b) and (c), which we call the adjusted

partial coefficient of determination, Ras(blc).
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Definition 2
The adjusted partial coefficient of determination for model (b) and model (c) is
defined as

GAb)/dy - GX(c)/d.
Gz(a)/da

RZi(ble) =

Also, the adjusted one could be obtained by

RYi(blc) = [1- RZi(b) 1- [1-RZ;(0) )

RLi(c) - Ri(b) . (10)

A large value of the adjusted partial R? indicates that model (c) might fit better than model
(b) does.

For the 2X2x2 structural habitat data for Lizards of Bimini(Schoener (1968)), we consider
the following three hierarchical log linear models, and their results are listed in Table 1.

(Table 1) Goodness of fits for structural habitat data for Lizards of Bimini.

ID MODEL d.f. G* Difference | df. G?
(a) (11{23] 3 12.43x*

(b) [13][23] 2 203 j(a) and (b)| 1 10.4+
(o) | [12](13][23] 1 015 | () and (c)| 1 1.88

* indicates that the p-value of the statistic is less than 5% significant level.

An exact graphical description for comparing model (a) with (b) is shown in Figure L

The angle, 81, between two vectors V. and Vs is 66.16° .  Since the magnitude of this
angle and the length of Vas are both large, we might say that the difference between
goodness of fits of models (a) and (b) is significant. Note that the value of R%b) is 0.834
and RZi;(b) is 0.755, and these values are highly informative for assuring that model (b) is

better fitted than model (a).
Furthermore, the relationships among the above three models are presented in Figure 2.

Figure 2 indicates that Vgl is relatively longer than both Vsl and |V, and that |Vasl is

longer than |Vul.  Also one obtains R¥%blc) = 0151 and RZ;(blc) = 0209 , which are
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irrelevant. Hence we may choose model (b) as the best.

It is impossible to represent the relationships among four hierarchical log linear models on
three dimensional space. So we suggest an alternative method to plot these four models in
this paper. One can consider the relationships sequentially. For a given hierarchical model,
we could compare this one with the following two models : one is the smallest model of all,
and the other is the special and just previous case of the given model. For example, there
are six models labeled as (a) to (f), where model (a) is the smallest and the special case of

model (b) which is the special of model (c), and so on. For model (d), we might obtain the
following equations :

G¥a) = GXald) + G*(d)
G%(c) = G¥cld) + GXad)

»

Also for final model (f),

G%a)
G%(e)

G¥alp + G(p
Gielf) + GH P

(Figure 3) A polyhedron for hierarchical models

Under the hierarchical structure, we might consider a polyhedron like the one in Figure 3,
where each phase is a right angled triangle. And vectors Va, Vs, ... , Vs in Figure 3

have the similar shape with ‘‘umbrella ribes’’ where each length is different. With this
polyhedron, we might apply the analogous arguments of Figure 2, i.e., through each right
angled triangle on phases of the polyhedron, we could compare any given model with both the
just previous one and the smallest one. These arguments could be applied to the well
known forward model selection method based on the conditional likelihood ratio test statistics.

As an illustrative example, we take the 3x2Xx2X2 detergent preference data of Ries and
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Smith (1963). Among others, Bishop et. al. (1975) and Fienberg (1983) considered the
following hierarchical log linear models for model selection, so we consider the same
hierarchy.

(Table 2) Goodness of fits for Detergent Preference data
ID MODEL d.f. G* Difference | d.f. G*
(a) | [1](2](3](4] 18 42.93+

(b) (11[3](24] 17 2235 | (a) and (b) 1 20.58%
() | [1][24](34] 16 1799 | (b) and (c) 1 4.36%*
(d) | [131[241[34] 14 11.89 | (c) and (d) 2 6.10%
(e) [1](234] 12 841 |(d) and (e)| 2 3.48

(6 | [123](234] 8 566 | (e) and (f) 4 2.75

* indicates that the p-value of the statistic is less than 5% significant level.

An exact graphical description for the six models above is presented in Figure 3 which is
based on the preceeding arguments. From this plot, model (d) might be regard as optimal.
If we are interested only in the relationship between previous and posterior models for a
certain model, we would regard a stretched-out shape like the one in Figure 4. This shape
of the stretched polyhedron could be described graphically all informations for the models
which include the relationship among the models in Table 2.

(Figure 4) Stretched polyhedron for hierarchical models

For example, if a goodness of fit statistic is significant, then the corresponding vector can be
drawn as a dotted line. With this expression, results of Table 2 could be replotted in Figure
5. Then this kind of the plot helps us to explain clearly a certain hierarchical model
structure and choose the best model. We may apply the forward and the backward selection
method via Figure 5. As a result the best model could be obtained as model (d) quickly and
clearly.
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(Figure 5) A modified stretched polyhedron for hierarchical models

We can obtain the coefficients of determination for evaluating models in Table 2 by
extending the equation (5) and the partial one by (6). All values about R? are listed in
Table 3. Among partial B*'s, R?%(cld) and R&;(cld) have the largest values 0.142 and

0.116. This means that the model (d) gives a better fit than the model (c) does, and we
could have exactly the same conclusion like that of graphical description. We may state that
these information are stochastically supplement to the graphical descriptions.

(Table 3) Summarized results for (Table 2)

model R? Ry R 1) |Rawi( - 1+)
(b) 0.4800 0.4494
(c) 0.5816 05293 | (b) and (¢) | 0.1016 0.0799
(d 0.7237 06448 | (c) and (&) | 01421 0.1155
(e) 0.8048 07072 | (d) and (¢) | 0.0821 0.0624
) 0.8712 07102 | (e) and (f) 0.0664 0.0030

3. Conclusion

We consider graphical descriptions to compare the relationship between the likelihood
ratio statistics corresponding to several log linear models in a hierarchical structure. If
we regard the values of the likelihood ratio statistics as a squared norm of the vectors,
we could evaluate visually the relationship between two hierarchical models by using the
shape of right angled triangles. And a tetrahedron could be described by the relationship
of three hierarchical models graphically. For more than three hierarchical models, we
might consider a polyhedron and a stretched polyhedron to explain the relationship
sequentially.  Moreover, we discuss that the angle on each phase of the plotting shapes
relates with the coefficient of determinations, and propose the partial coefficient of

determinations. The partial R? and the adjusted partial R® are also proposed in this
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paper. This graphical descriptions and several coefficients of determination help us to
compare and evaluate the goodness of fits for the hierarchical log linear models, and
could be applied to the model selection method.
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