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Applications of Saddlepoint Method to Stress—-Strength Modelv

Jonghwa Na2 and Woochul Kim3)

Abstract

In many problems concerned with statistical inferences, it will be of interest to
compute tail areas rather than densities. But, it is often hard to calculate the exact
tail probability. Saddlepoint approximation formula to the tail probability of a smooth
function of random vector is developed by DiCiccio and Martin(1991). Applications of
this method to stress- strength model are considered in this paper. To obtain the
generalized p-values suggested by Tsui and Weerahandi(1989), we need to calculate
complicated multiple integration. However, DiCiccio and Martin’s(1991) results offer a
convenient method to approximate these very accurately. For many artificial data sets,
we access the accuracy of DiCiccio and Martin's by comparing the approximate value
with the exact one.

1. Introduction

Since Daniels(1954) introduced the saddlepoint method into statistical problem, many
approximation formulae to the density of the various type of statistics, including sample mean
and maximum likelihood estimator, etc, has been developed so far. Barndorff- Nielsen and
Cox(1979) reviewed the method of approximations related to the density. These approximation
formulae to the density can not be used directly to the problems concerned with statistical
inferences.

To construct confidence intervals or p-values for testing, we need to approximate the tail
area (or cumulative distribution function), rather than the density. It can be obtained by
integrating the approximation of the density. However, since the probability is often expressed
in the form of multiple integration, we need many computation to solve it numerically. In
addition, as the dimension is larger the results from numerical integration are not reliable. To
get around this problem, many statisticians are devoted to develop the accurate approximation
formulae to the tail probability.

Among many related papers, Lugannani- Rice(1980) and Daniels(1987) offer very accurate
saddlepoint approximations to the tail probability of sample mean. Also, Barndorff-

1) This work was supported by the Korea Research Foundation Fund, 1994.

2) Statistical Research Institute, College of Natural Science, Seoul National University, Seoul, 151-742,
KOREA.

3) Department of Computer Science and Statistics, Seoul National University, Seoul, 151-742, KOREA.

-336-



Applications of Saddlepoint Method 337

Nielsen(1990) and Fraser(1990), etc, studied to the approximations of the tail probability of
maximum likelihood estimator. Unfortunatly, most of the development of saddlepoint theories
related to the tail probabilty have been restricted to the univariate problems. Recently,
Wang(1990) has derived the saddlepoint approximation to the tail probability for the sample
mean of n independent bivariate random variables.

Generalized p-values suggested by Tsui and Weerahandi(1989) are a kind of significant
probability for testing parameters in stress-strength model. But, the generalized p-values are
often expressed in the form containing multiple integral, we have difficulty in calculating these
numerically. In this paper, we will use the approximation formula developed by DiCiccio and
Martin(1991) to avoid the complicated multiple integration needed to calculate the generalized
p-values. Their results are very accurate and offer a convenient method to approximate the
generalized p-values. In Section 2, we briefly reviewed the approximation suggested by
DiCiccio and Martin(1991) to the tail probability of a smooth function of random vector.
Section 3 devoted to some application problems concerned with stress- strength model in
reliability theory. For many artificial data set, we access the accuracy of the formula by
comparing the approximate value with the exact one.

2. Saddlepoint approximations to marginal tail probability

In many situations, inference for a scalar parameter in the presence of nuisance parameters .
requires integration of either a joint density of pivotal quantities or a joint posterior density.
DiCiccio and Martin(1991) give the approximation to marginal tail probability for a real-valued
function of a random vector, where the function has continuous gradient that does not vanish
at the mode of the joint density of the random vector.

Consider a continuous random vector Y=(Y! - ,Y?) having density of the form
fr(y) @ b(yexp{ L (»), y=(y', . 2.1

Suppose that the function £ attains its maximum value at y=( ;/j ,=,¥? ) and Y-y is
O,(n"Y?) as sample size n increases indefinitely. For each fixed y, assume that £ (y) and

its partial derivatives are O(n) and that b(y) is O(1). Now, consider a real-valued variable
Z=g(Y), where the function g has continuous gradient that is nonzero at 3; We will

discuss an accurate approximation for marginal tail probability of Z that is easy to compute
and can avoid numerical integration.

Let y=y(z) be the value of y that maximizes £ (y) subject to the constraint Z=2z.
Moreover, let z=g(y ), so that Z-2 is Op(n Y?) and y(z )=y . Consider the function
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1

M2 =sgn(z-2 20 (5 )~ L GEHN 2, @22)

which is assumed to be monotonically increasing. Let us define some notations as follows :

For i,j=1,,p,

Liy)=2aL(y)/ay', L i{y)=3a%L(y)/ay'ay’ (2.3)
giy)=agy)/ay', giy)=2a’gly)/ay ay, (2.4)
Hif2)=- 1 {y(2)}+ lk{~(2)} gily(2)), (25)

gilly(2)} i

where k is any index such that g«{y(2)} does not vanish and

H(2)={H {2)), (H(2))} '={H"(2)). (2.6)

Note that H(z) is a pXp matrix and H(Z )={- 2 (v )} .

DiCiccio and Martin(1991) gives the tail probability of Z as follows.

IV 1 gi{y(2)} b{37(z)L] = 5
Pr(Z 2 2)=8(r) ¢(r)[ Lo pipELEES LEEL ] o %), @D
where r=r(z) and jis any index such that gi{y(z)}is nonzero and
1
3 . R 7
D(z)={H”(z)gi{y(z)}gj{y(z)} H(z) } (2.8)
{H(z )l

It is noted that the expression of summation convension is used in (2.8).

3. Applications of saddlepoint method to stress- strength model

An important problem in stress-strength model concerns testing hypotheses about the
reliability parameter R=Pr{X >Y}. Suppose that the reliability of a unit is to be tested
using independent samples X1,X2, -, Xm and Y1,Y2,Y. obtained from the normal
populations N(161) and N (120%), respectively. Then the problem of testing

Ho: R £ Ro versus Hi1: R > Ro (3.1

is equivalent to testing
Ho:8 < 8g versus Hi:8 > By, (3.2
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where 8=(1t1-u2)/¥ 6i+05 and 8o=9 '(Ro).
Now consider the testing problem of (3.2) in case of 80=0 for convenience. In this case,

8=(u1-uz)/Y07+0% is parameter of interest and v=(0%0%) is nuisance parameter. Tsui and

Weerahandi(1989) suggest the generalized p-value so that it serve to measure how strongly
the observed data support the null hypothesis. It is a kind of significant probability for testing
problem. The smaller the p-value, the stronger the evidence against the null hypothesis. The
generalized p-value for testing (3.2) is given by

p=Pr(W 2 w | 8=0), (3.3)
where
4 3
2 2 2 2 2 2
_(v_T OL, 02 Or s1 0z _sz (3.4
w=(X Y)(m+n) [m s?h S%} :

Here, four statistics 7(,7,5%, and S} are the sample means and the variances of random

samples and are mutually independent. Note that the observed value of W is given by

w=x-y.

By letting
s s w
c1-——=3. 7, C2=—7. 7 =1l-c1 c3: ek (35)
S1+S2 S1ts2 S1+S2

it can be easily shown that the expression (3.3) is equivalent to

T ( <1 L) (36)

|l 7o (5

B 1-B

where T has a Student’s t distribution with (m+n-2) degrees of freedom and is
independent of B which is beta distribution with parameters (m-1)/2, (n-1)/2. We can
obtain the exact value of (3.6) by the numerical computation of

Es[V {-cs¥m+n-2 (¢c1/B+c2/(1-B)) V%)), (3.7

where W( +) is the CDF of Student’s ¢ distribution with (m+n-2) degree of freedom,
and Es denotes the expectation with respect to B.

To avoid the complicated numerical integration of (3.7), we will consider the method to
approximate the values of (3.6). By using the DiCiccio and Martin’s(1991) results (2.7) in
Section 2, we can approximate (3.6) as follows :

Let Y=m+n-2 and U=7/¥Y. Then the joint density of U and B is given by, from the
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independence of U and B,

¢ (ub)= *51 log (1+u%)+ ’"2'3 logh+ ”2'3 log (1-b). (3.8)
The maximized values of (3.8) are
u=0, b=(m-3)/(m+n-6), (39)

and it can be easily shown that the regularity conditions, by letting, m=1n, t1€[0,1],
_ L oL
U=0+0pin ), B=b+0,(n %) (3.10)

are satisfied.
Suppose Z=g(U,B), where g(U,B)=UYci/B+c2/(1-B). Then, under g(u,b)=c3, the

maximized values u(c3),6(c3) of (3.8) can be obtained by numerical or theoretical method.

The corresponding values of (2.3) and (2.4) are given by

Lu=—u(v+1)/(1+u?), L o={(m-3)/b-(n-3)/(1-b)}/2,
L ow=(v+ D1 /(1+uD?,
L w=0, L ss={-(m-3)/b%+(n-3)/(1-b)2}2

and
gu={ci/b+ca/(1-b)Y 2 go=ua/(2g.),

guw=0, gw=a/(2g.), gmw=u (2a’g i-a®)/(4g?),
a=-ci/b*+c2/(1-b)%, a’=2 {cy/b>+ca/(1-b)°},
where go, L« and g, ! @ are the first- and second-derivatives with respect to its

subscripts, respectively. For a given values of c¢i1,c3, we can obtain the values of 37=(L7,5 )

and (2.8) which are needed to calculate (2.7).

Figure 1 shows that the approximate results via the saddlepoint approximation formula (2.7)
are very close to the exact values. Also, the approximate method requires much less
computing time than the case of the exact one. As the approximation (2.7) is easy to use and
very accurate, we can avoid the complicate numerical integration of (3.7). For the values of
}7=(i7,5 ) in the approximation, we use the Brent's method. The exact values of (3.7) are
calculated by using the algorithm of the Romberg integration. Both exact and approximate
values used in Figure 1 are listed in Table 1 to access the accuracy of the approximation.

FORTRAN programs to obtain the values of the exact and the approximate in Figure 1 are
available from me on request.
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Table 1. Generalized p-values used in Figure 1

Figure 1 | ¢3 | Exact | Approximate || Figure 1 | ¢3 | Exact | Approximate
-1.0 | .9923 .9919 -1.0 | .9930 9892
-.8 | .9789 9774 -.8 | .9805 9749
-.6 | .9436 9401 -6 | .9469 9390
-4 | .8625 8567 -4 | .8673 8584
Al : -2 | .T112 .7062 B1: -2 | 7154 7089
cg=02] .2 | .2888 .2938 c; =011 .2 | .2846 2911
4 | 1375 1433 4 | 1327 1416
6 | .0564 0599 .6 | .0531 0610
8 | .0211 .0226 8 | 0195 0251
1.0 | .0077 .0081 1.0 | .0070 0108
-1.0 | 9912 .9894 -1.0 | .9936 9900
-.8 | .9757 9723 -8 | 9809 9761
-6 | .9368 9312 -6 | .9461 9398
-4 | .8520 .8450 -4 | .8645 8577
A2 : -2 | 7023 .6970 B2: -2 | 7122 7075
c; =05 .2 | .2977 .3030 c;=03| .2 | .2878 2925
4 | 1480 .1550 4 1 .1355 1423
.6 | .0632 .0688 6 | .0539 0602
8 | .0243 0277 .8 | .0191 0239
1.0 | .0088 0106 1.0 | .0064 0100
-1.0 | .9894 .9860 -1.0 | .9938 9868
-8 | 9723 9673 -8 | .9810 9755
-6 | 9312 .9249 -6 | .9458 .9396
-4 | 8450 .8389 -4 | .8636 .8573
A3: -2 | .6970 .6932 B3: -2 | 7112 .7070
c; =081 .2 | .3030 .3068 c1 =05 2 | .2888 2930
4 1 .1550 1611 4 | 1364 .1427
6 | .0688 0751 .6 | .0542 .0604
8 | .0277 0327 .8 | .0190 0245
1.0 | .0106 0140 1.0 | .0062 0131
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Now, we will consider another similar application. Let Xi,,Xm be random samples from

exponential distribution T'(1,u;) and let Y1,-,Y, be random samples from [(1l,u2) . The

Xi’s and Y,;’s are independent. Consider the problem of hypotheses testing

Ho : U1-g € 8¢ versus Hi @ Ui-Hfiz > do, 3.11)

where 8¢9 2 0. Let X= lei and Y= ;Yi. Suppose x and y are the observed values of

X and Y, respectively. Let Ai=Wi/x, i=1,2, 8p=8¢/x and 8=r;~k2. Then (3.11) is equivalent

to testing
Hy:0 €8y versus Hi:0 > Bp (3.12)

Here, B is the parameter of interest and Az is the nuisance parameter.

Tsui and Weerahandi(1989) suggest the generalized p-value of the test (3.12) is given by

_ v 1 _
p—Pr{ L -0 201 e-eo}, (3.13)

where U=X/{x(0+L2)}~T(m,1), V=Y/(Aax)~T(n1) and U and V are independent. For
a given data set, the value of p serves as a measure of how the data support Ho. The

exact value of (3.13) can be obtained by numerical computation of

p=EB[r m*n(ﬂB))], (3.14)
where

_ 1 1B m+n-1_-z
rm*n(ﬂB))" r(m+n) f[) Z e dz,

185 (3515 )

and Ep is taken with respect to B~B(n,m) .

Now, we consider the approximation of (3.13) by using (2.7). An equivalent expression of
(3.13) is given by

Pr —;'%—# 2 80} (3.15)

where S~T(nl/n) and T~T(m1/m) and S and T are independent.
Let Z=g(S,T)=y/(xmS)-1/(mT). Then the joint density of S and T is given by

L(s,t)=(n-1)logs+(m~-1)logt-ns-mt. (3.16)
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The maximized values of (3.16) are

s=(n-1/n, t=(m-1)/m, (3.17)
and it can be easily shown that the regularity conditions

L
2

o1
S=§+0,(n %), T={+0,(m ?) (3.18)

are satisfied.

Under Z=8o, the maximized values s(8¢),£(8¢) of (3.16) can be obtained by numerical

method. The results of (2.3) and (2.4) are given by

Ls=(n-1)s-n, £.:=(n-1)/t-m,
L w=—(n-1)/s% L «=0, £ u=-(m-1)/t*

and

g s=-y/(xns®), g:=1/(mth),
g ss=2y/(xns®), g«=0, g u=-2/(mt>).

All the values which are needed to calculate the approximation (2.7) are easily obtained from
the above summarized results.

Table 2 gives us the values of exact and approximate results obtained from (3.14) and (2.7).
The exact values are calculated from numerical integration of (3.14) containing improper
integral. The approximate results from (2.7) are very close to the exact values even for small
sample sizes. Moreover, the computation of these approximations requires much less computer
time than the computation of the exact values.

Finally, we note that the methods given in this section are also applicable to many other
statistical problems. For examples, stress-strength model with covariate (Weerahandi and
Johnson(1992)), multivariate Behrens- Fisher problem, and Bayesian analysis, etc.

4. Conclusions

DiCiccio and Martin(1991) gives the approximation formula to the marginal tail probability
by using saddlepoint techniques. Their approximation is very accurate and gives a convenient
way to solve multiple integration arising in statistical problems. In this paper, we considered
the applications of their approximation to the problems concerned with reliability theory.

Generalized p-value, which is a kind of significant probability for testing problem in
stress-strength model, can be approximated by using the approximation given by DiCiccio and
Martin(1991). The approximate values are almost coincide with the exact values. Also, the
approximation is easy to use and require much less computer time than the case of the exact
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values. So, we can avoid the complicated multiple integration which is needed to calculate the
exact generalized p-value. Applications to many artificial data sets are considered in this

paper.

Table 2. Generalized p-values in the case of exponential distribution

6y =2.0 6o = 3.0
m n | y/z | Exact | Approximate | m n | y/z | Exact | Approximate
5 10| 5 .0001 .0001 5 10 15 | .0205 .0202
10 | .0168 .0166 20 | .0967 .0960
15 1418 .1407 25 2487 2470
20 | .4028 3965 30 | .4451 4440
25 | .6722 .6705 35 | .6346 6332
30 | .8524 .8511 40 | .7826 7814
35 | 9429 .9420 45 | .8815 .8806
40 | .9802 9797 50 | .9400 .9394
45 | 9936 .9932 b5 | 9714 9711
50 | .9980 9978 | 60 | 9871 .9868
55 | .9994 .9996 65 | .9944 .9942
60 | .9998 .9999 70 | .9976 .9975
10 10| 5 .0002 0002 10 10| 15 | .0259 .0256
10 | .0234 0231 20 | .1168 1159
15 | .1808 1797 25 | .2881 .2865
20 | .4751 4740 30 | .4968 4957
25 | .7434 7426 35 | .6860 .6850
30 | .8999 .8994 40 | .8244 .8238
35 | 9673 9672 45 | 9107 9103
40 | .9907 .9907 50 | .9581 9579
45 | .9977 9976 55 | .9816 9815
50 | .9995 .9995 60 | .9924 .9924
55 | .9999 .9999 65 | .9970 .9970
60 { 1.0000 1.0000 70 | .9989 .9989
30 30| 40 | .0179 0179 30 30| 60 | .0191 .0191
45 | .0635 .0634 65 | .0461 .0460
50 | .1598 .1598 70 | .0940 0939
55 | .3089 .3088 75 | .1670 .1669
60 | .4871 4858 80 | .2639 .2637
65 | .6587 .6583 85 | .3782 3774
70 7963 .7962 90 .4994 4991
75 | .8904 .8903 95 | 6164 6161
80 | .9464 .9464 100 | .7201 .7198
85 | .9761 .9761 105 | .8054 .8052
90 | .9902 9902 110 | .8708 8707
95 | .9963 .9962 115 | .9180 9179
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