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A Central Limit Theorem for Linearly Positive
Quadrant Dependent Random Fields

Hyun-Chull KimD

Abstract

In this note, we obtain the central limit theorem for linearly positive quadrant
dependent random fields satisfying some assumptions on the covariances and the

moment condition supElX {* <®. The proofs are similar to those of a central limit
theorem for associated random field of Cox and Grimmett.

1. Introduction

A random field is a collection of nondegenerate random variables indexed by Z 4 and is

denoted by (X ;' Jj€ 7%}, In the last years there has been growing interest in concepts of

positive dependence for random fields. Such concepts are of considerable use in deriving
inequalities in probability and statistics.
Lehmann[6] introduced a simple and natural definition of positive dependence :

A random field {X ; J€E 7%} is said to be pairwise positive quadrant dependent if for any
real rj rjand [#],
PX>ri X >rj}2P{X>r}P{X>rh
A much stronger concept than positive quadrant dependence was considered by Esary,
Proschan and Walkup[4]:
A random field { X ;; j€ Z%} is said to be associated if for any subset Ac Z% and for any

pair of coordinatewise increasing funcﬁons f, gon R #A
Cov(fiX;jeA) glX]J€EA))20,

whenever the covariance is defined. Here #A is the cardinality of A.

Newman[8] was the first who showed that for positive dependent random fields approximate
uncorrelatedness implies approximate independence, such that useful limit theorems can be
obtained.
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In the following years several extensions and generalizations of these results were given(for
examples [3, 4, 7, 91). Most of these results, however, cannot be applied to weaker concepts of
positive dependent random fields.

Newman[7] has shown that a stationary associated random field {X ;: j€Z?}, having the
property that
0<a’= 2 Cov(Xg,X )<, (1D
1

satisfies the central limit theorem.

Cox and Grimmett[3] have shown that the assumption of stationarity may be vrelaxed and
replaced by certain conditions on the moments of the X's, that is, instead of (1.1) Cox and
Grimmett[3] proved the following central limit for associated random fields using conditions on
the coefficient of maximal covariance

ulr) = sup 1sksn1 2o Cov(X ;X&)

I - kli=r

where |j-kl|=sup{lji-kil:i=1, ~ ,d}.

Theorem A (Cox and Grimmett(1984)). Let {X ;:j€Z?} be an associated random field

with EX ;=0. Assume
(1) inf j<j<mVar(X ) >0,
(ii) sup <zmE (X ) S @

(i) w(0) < o, u(r) -0 as r— @

S nl™ ES n . . N .
©
Then Vars is asymptotically normally distributed as n-— ©,

The purpose of this note is to extend Theorem A to a linearly positive quadrant dependent
random fields(see Definition 2.1) using the similar methods to those of Cox and
Grimmett(1984).

The preliminaries and results are stated in Section 2. The proofs of our theorems as well
as some lemmas are given in Section 3.

2. Preliminaries and Results

Newman(1984) first introduced the concept of linearly positive quadrant dependence. We
extend this concept to the random field.
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Definition 2.1. A random field {X ;j€Z°} is said to be linearly positive quadrant

dependent if for any disjoint subsets A, B¢ Z ¢ and positive r §'s,

%:Ar (X and ;Br ;X j are positive quadrant dependent.
i Fy

For any fixed I=1, 2, 3, =, welet m=[n/l]. Put
n = X',
Sl ;3_:"; !

YD = (j—l;qs_ﬂXi for 1< j<ml,

Smyp = 1<§lej(l), Z(n) =S551-S mi,

2 _ 2 - .
Omnn = Var(Smu), s“(n,) lsfv‘_s.muVar(Y,(l)),
041 = Var(S%).

Note that Y {I) and Z(n) depend upon the choice of [ and that m=[—'21—]—>°°,

as n— @,

Lemma 2.2. Let {X ;:Jj€ Z} be a linearly positive quadrant dependent random field with

EX ;=0, EX?< @, Then we obtain

2
. o nl 2d d
lim sup s SZnD) <1+ 7 §1U(r) (2.1)

where c¢1 = inf j<j<n Var(X ;) > 0.

Put
0na1(t) =E(exp(itSny)),
0ni(t) =E(exp(itSmy)),

0n(t) = E(exp(itY j(1))).
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Lemma 23. Let {X ;'@ j€ Z% be a linearly positive quadrant dependent random field

with EX ;j=0, supi<;j<mE(X jlz) < . Then we have the following statements :

limsup e 0 n2 55 =0 il gl S 10122 Suc), 22)

. _t 5_ .
llmsup,,—m I(pn,l( s(n,l)) “_ls_lSml(Dru( s(nl) )I

(2.3)

r=

_ 42
lim Sup nven| 1 15 sy 0 010 —775) - exp(—5—) | =0 . (2.4)

Theorem 2.4. Let (X ; j€ Z%} be a linearly positive quadrant dependent random field
with EX ;=0. Assume

(i) inf 1< j<np Var(X ;) >0,
(ii)  sup 1<j<niE(X )< @
(i) w@) <o, uw(r) =0 as r— @
where u(r) = supls_,su Z Cov(Xl,Xg)

Snl—ES nl
(Var(S ) 2

Then is asymptotically normally distributed as n-—®,

3. Proof

Proof of Lemma 2.2 : First we show that

cin® < 0% < c3n (3.1)

where c¢3 = u(0). The left hand side of (3.1) follows from

2 _ _ v d
0%1= 2, Var(Xp+ lsLZJ‘S"‘ICOV(Xl,XJ)Zcm

1l<1i<n]

since the X ; are linearly positive quadrant dependent. That is, the X ; are
nonnegatively correlated and the right hand side of (3.1) follows
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Y - d d
Cov(X ;X< 15;91“(0) u(0)n® < c3n’.

l<ii<nl
By the similar arguments we have
(mD%i1<s%nl) <0%u1< (mD%;
and
021 S 0%,
By expanding S in terms of the Y ;(I)'s we find that
6% = Var(Z(n)) +2Cov(Z(n), Smy)+ Var(S my) .

Since Z(n) = 2 X

mll<j<n]
Var(Z(n)) £ c3l?((m +1)9-m%),

Cov(Z(n),S(nD)) S el (m+1)-m?) .
Thus (3.2), (3.5) and (3.6) yield that

Var(Z(n)) +2Cov(Z(n), Smy) _ 3c3%{(m+1)-m?})
sin, D - ci(mh?

For the final term in (3.4) -
Var (S m1)) = s*(n1) + 2 (nl)

where

2 (nl) = ,;j(mlcov(Yi(l),Yj(l))

< &, a;lCOV(Xg,Xg)

-0 as n—oo,

(3.2)

(3.3)

(34)

(35

(3.6)

3.7

(3.8)
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and A;={a€2%(j-1)I<a<il}. But

!
2 2 Cov(Xa, Xg) <241 20 ulr) 3.9)

since there are at most 2d!%' points of A; which are within distance r of some point
outside A ;.
Combining (3.2), (3.4) and (3.7)-(3.9) we find that

2
) gy L
lim sup e —7 b= <14 zcl 2, ulr)

as required.

Proof of Lemma 2.3 : To prove(22) by a standard inequality, we have that

0 n (

= "5{‘1‘)—0)",1( s(nt, D )I

< (Var (S - St

4
2

= ¢ (Var( (;Znnl —S'"u( s(nl, n Ulnl )))

Sltl(omu( s(}l,l) - Ulnl)**( Ulnl ){Var(Z(n))}w)

0 n

s(n,D)

14 cs{tm+1)?-m9) )1/2)

d
cim

<id

by (3.2), (3.3), and (3.5). Thus (2.2) follows from Lemma 2.2.

Proof of (2.3) : We use Theorem 1 of [9] to find that

'(Dn,l (_S—(—f_l,—l'r)‘nlstml(Dn_l( ) )I

s(nl
/2

232(n D
2

= W(Uz(nl) s2(n,)

2 2
< L(*&_ -1)
s (n,D)

< ( )Zcov(Y (D, Y L)
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Now use Lemma 2.2.

Proof of (2.4) : This follows from Lyapunov’'s Theorem(see Theorem 7.12 of [2], for
example). Just note that

EUYAD®) < 2 EIX X X4l
e, B, 1EA;
< IBdCZ

by Holder’s inequality , and so by (3.2),

—1 E(Y (D% < _ MU ) as noe
s*nl) 1sm ! = (m%e) ** ’

where A j={a€Z%: (j-1N<a<jl}, cz2= SUD_I_stnlE|Xj‘3.

Proof of Theorem 2.4. The theorem follows immediately from Lemma 2.3
since
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