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Estimable Functions in Row-column Designs!

Dong Kwon Park?

Abstract

A method is presented for finding estimable functions in a row-column design. It
can easily be applied because the method consists of solving equations derived from
the design without using the design matrix. It determines not only the estimability of
treatment effects but also between row(or column) and treatment effects.

1. Introduction

Consider an experiment with v treatments in the presence of two crossed blocking factors
having r and c levels respectively. We restrict attention to experiments in which exactly one
treatment is observed at each combination of levels of the two blocking factors. A design for

such an experiment is called a row-column design. Assume that the following linear additive
model holds :

X+ Xop + Xet + E,

«
|

Xn + E | 1.D

where y is an n(=rc) X 1 vector of observations; a=[ay,az,..., d-]" is a vector of effects of the r
levels block parameters corresponding to the rows of the design; B=[py,B2,..., B.]" is a vector of

effects of the c levels block parameters corresponding to the columns of the design; T=[11,%2,...,
1,]' is a v X 1 vector of treatment parameters; X=[Xi|X2lXs] is a design matrix; n=[alBlt]" ;

E is a vector of random errors, where A" denotes transpose of matrix (or vector) A.

It is well known that every contrast of treatment effects in a connected block design is
estimable. If a design is disconnected, we need to classify equivalent classes of treatment
parameters so that any contrast among the parameters in an equivalent class is estimable. It
is easy to determine the equivalent classes in a block design by drawing a treatment
concurrence graph (Bose, 1947) or electrical network (Tjur, 1991). It was a difficult task for
row-column designs. Park and Shah (1995) gave a simple procedure which enables one to
determine which treatment contrasts are estimable in a row-column design. The procedure can
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be done by looking at the basis formed by the y; - yis + yir + yrj, which is called
tetra—differences. Further, it also determines the estimability of row effects and of column
effects.

A simple procedure presented here enables the results of Park and Shah to be used for
finding estimable functions between row(or column) and treatment effects. It can easily be
applied because the method consists of solving equations derived from the design without
using the design matrix.

2. Problem Formulation

To deal with our problem easily, we transform the design matrix into a matrix having a
simple form. Without loss of generality, assume that rows of the design matrix X are
arranged in lexicographical order with respect to the rows and columns of the design. For the
first step, we eliminate the parameter @ from the model (1.1). Let X° be the design matrix X

pre-multiplied by the n X n matrix T, where

T = Ir®Lc

where I, is an r X r identity matrix, ® denotes Kronecker product, and the ¢ X ¢ matrix
Lc is

10 000.. 0
1-1000. 0
10 -100. 0
IJC=
1 )

As a simple example, take a 4 x 3 design with v=5 treatment labels. The design is shown
below :

Column
|1 2 3

|

1
111 2 3
Row o 12 3 1
313 1 2
4 |1 4 5
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The design matrix X for model (1.1) and the matrix X are

1000/100/10000 1000/100{10000
1000(010(01000 0000[1-10{1-1 000
100000100100 0000|{10-1{10-100
0100/100[01000 0100/100{01000
0100{010{00100 0000(1-10[01-100
0100[001{10000 0000|{10-1/-11000

X = X© =
0010{100[00100 0010[100/00100
0010[010[10000 0000[1-10{-10100
0010{001{01000 0000[{10-1[0-1100
0001{100{10000 0001{100{10000
0001[010[00010 0000[1-10{100-10
0001{001[00001 0000[10-1{1 000-1

Let the vector u; be i-th unit vector of length ¢, and for a next step, we arrange the

rows of matrix X° in the order (j, c+j, 2¢c+ j..(r-Dec+p, F12,..,r, to give

-Ir I Ul Fl
|
| U; Fs
I
X=10 | Us F3
|
|
|
] | Uec F.

where Uy = 1, ® ui’, Ui(i=2,..c) = 1, ® (u1 - ui)', 1, be an r x 1 vector with all 1
and where Fi is an r X v matrix whose rows consist of r unit vectors of length ¢, and
where F; (i=2,..,¢) is an r X v matrix F{ = [ fu,fz...fir 1, Where fii is the difference of

two unit row vectors of length v.
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For the above 4 x 3 design,

1000/100{10000
0100j100j01000
0010{100j00100
0001{100/10000

0000|1-10{1-1000
0000(1-10/01-100
0000(1-10{-10100
0000{1-10{100-10

0000(10-110-100
0000/10-1|-11 000
0000/10-1{0-1100
0000i10-1j1000-1

Before we state and prove our theorems, we state the following lemma whose proof is
given in Butz (1982).

Lemma 2.1. (Butz, 1982) {(n) = p'® is estimable in the model (1.1) if and only if {

vanishes for any point # in the kernel of X.
Since the matrix T is non-singular and X" is just an arrangement of X,

kernel of X°

kernel of X

kernel of X° 2.0

Thus, to apply the lemma 2.1, we will consider the kernel of X* which satisfy the equations

X't = 0, where 0, be an n X 1 vector with all 0. The equations become
a;j+ wi'B+ £t =0, i=l; jFl,.,r (2.2)

(ur - udB + £t =0, i=2,..,c: j=1,..,r 2.3)
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3. General form of estimable functions

From the representation of X’, kernel of X~ becomes as follows.

[ Uz | Fz )
kernel of X* = {n|(B,T) € kernel of { Us { Fs I , 4 = (B + fij )
\ Ucs | Fe )

= {®|n which satisfy the equations (2.2) and (2.3) }

= (& {B)] (ur - udB = -fit, i=2,.,c},
{al a; = (1B + £O}: j=1,..,r] (3.1)

In the equations (3.1), for fixed i=2,.,c, fiT = Tx— T for some k,k'=l,..v.
Theorem 3.1. A parametric function {(®)= p'r=(B1- B;)+( T,~ 1) is estimable.

Proof. {(m)=( B1- B;)+( Tx— Tsx’) vanishes for B,t which satisfy the equations (3.1) for any 4,
and the proof follows from the lemma 2.1.

Obviously, columns can be treated as rows by exchanging rows and columns. If a design is
connected, we will see in theorem 3.3 that every contrast of row and column effects is also
estimable. Thus, if a row-column design is connected, then we do not proceed further and
conclude that every contrast among row, column and treatment effects is estimable.

Now, we suggest a simple procedure for obtaining equivalent classes of treatments. For
fixed i>1, look at the differences of pairs of rows in the equations (2.2) and (2.3). They are

fit - fit =0

or

fit = fi't,  grj= LT (3.2)

The equations (3.2) in the above example are shown below :

i =2: T -T2 = T2 - 13 1=3! T1-13=T:-T
T2~ T3 =1T3 - T T2 - T1 = T3 - 12
WM-T=Tu"T1 3 -T2 =T~ 15
T - T2=T- T T - 1=T - T

Each of these sets can be written as a single equation as follows :
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T1-T4 3.3)

"
H

EQ(2) : Ti~T2 = T3 = 13-T1

EQ@) : T3 = To-T1 = 13-T2 = 71— Ts 34

Theorem 3.2. If the relation between two treatment parameters Tx and Tk is derived as
Tk = T& from EQ(2), EQ(3), . . ., EQ(¢), they are in the same equivalent class. Otherwise,

they are in different classes. If only one class exists, the design is connected.

Proof. Since our concern is connectedness between two treatment parameters Tx and T,

our parametric function is then
&m) = pm = - w (35)

, where p' =10,..010,..010,..1,..,-10,.0] corresponding to ® = [a | B | ©]° Without
regarding any a and B, replace x in the equations (3.1) by

(x| {t| fi't = 8}, (Bl (u1 - u)'P = -3},
{al a; = -(ui'B + f£if0)}] (3.6)

,where %;’s are some constants.

(x| {t| fit = 8} and for any B ]

[x| {t] T which satisfy EQ(i{)’s} and for any «,B] (3.7

Then &(n) of the equation (3.5) vanishes only if 7T« and 7T« in the equation (3.7) have a

relation with T«=1Tx. Since & of the kermel of X" (or X) is a subset of & in the eguation

(3.7), the proof follows from the lemma 2.1.

Now, we sketch the procedure for determining the equivalent classes. For each i, write
the reduced equation EQ( ). Look for two occurrences of 1Tk. Suppose these are Tix- Ty =
Te~ Tk~ (Le, Ti=7Tk”) then Tix and Tx” are in the same equivalent class. Replace T by Tk

in all of EQ(i)’'s. At any stage, combine 2 equivalent classes containing any label in common.
We show how to do this, step by step, with the 4 X 3 design given in section 2. In the
equation (3.3), EQ(2), T1~12 = 12-73 implies that 12 = (11*+13)/2. By inserting T2z = (T1+13)/2 into
the equation 1T2-T3 = T3-T;, we have (11-13)/2 = 13-T; or 11 = T3. From the theorem 3.2, the
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treatment parameters T; and T3 are in the same equivalent class. Moreover, the equations (3.3)
and (3.4) become zero and Ti=T3=13=T4= 15, so that all the treatment parameters are in the
same equivalent class. We conclude that the 4 X 3 design is connected.

The equation EQ(i)'s can be derived directly from the design without writing down the
design matrix X or the matrix X". Now, a simple procedure for obtaining the EQ(i{)’'s is
presented as follows :

A row-column design is given by r rows and c columns. Without loss of
generality, we assume r 2 c¢. Take c-1 pairs of two columns (1,2), (1,3), ... , (1,¢).
For each fxed pair, subtract the second column fom the frst column so that the
pair of columns has r treatment diferences. Then an equation EQ(i) is deduced by
equating the r treatment differences in the pair of columns.

The procedure follows from theorem 3.2, by looking at each i in turn so that choice of
column blocks is the choice given by (u1- u;).

As far as the estimability of treatment effects is concermed, the results of theorem 3.2 are
the same as those of Park and Shah, although their proof uses a different approach. However,
a procedure given in here gives general form of estimable functions between row(or column)
and treatment effects.

Theorem 3.3. If two treatments Tx and 7Ty are in an equivalent class, the corresponding

B1 and B: in the equations (3.1) are also in the same equivalent class of column effects.

Proof. If two treatments 1Tx and 1Tix are in an equivalent class, ;=0 in the equations

(3.6). It implies that Bi= Bi. From the lemma 2.1, the proof is established.

Theorem 3.3 implies that if a design is connected, then every contrast of row and of
column effects is also estimable. This results is also contained in Raghavarao and Federer
(1975).

Two examples will show that how to obtain the EQ(i)’s and find the equivalent classes
from the EQ( {)’s. During the procedure, we could find estimable functions L(m)=(B1— Bi)+( Tx~

Tr).
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Example 3.1. Consider the following row-column design which is given in Butz(1982).

11
11

B (o B e I
O O Ut oW

10

The column block pairs (1,2),(1,3) and the corresponding EQ({)'s, i=2,3, are as shown
below :

Columns 1,2) (1,3
1 3 1 2

6 2 6 8

9 8 9 11

7 5 7 1

4 5 4 3

10 9 10 7

EQ(2) : 1113 = 16~T2 = To~Tg = Tr~Ts = T4~Ts = T~y

EQ@M) : 1112 = T6~Tg = To~Tu = Tr~Tn = T4~13 = To~T7

In EQ(3), T9—T11 = T7~t11 implies that 17 and 19 are in the same equivalent class. Since 17 =
Ty, T10~Te and Tiw~T7 which are the final terms of the EQ(2) and EQ(3) are the same. Thus,
we can equate EQ(2) and EQ(3), and we have 1T:-1T3 = 1;-T2 so that T2 and 13 are in the same
equivalent class. By continuing this way and at any stage, combining 2 equivalent classes
containing any label in common, we can verify that { Tl /=1,46,79}, {tj j=2,35811} and

{ T10} form equivalent classes of treatment parameters. Obviously, the design is disconnected.

Replacing each treatment by the lowest numbered treatment in the corresponding class we
get the following design
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From theorem 3.3, If two treatment parameters T« and T« are in an equivalent class, we
see that B; and B; are in an equivalent class of column effects. In this way, we verify that

{B1}, {B2, B3} and {a, oz, ds, a4, ds}, {as} form equivalent classes of column and row effects

respectively. It is also clear from inspection of (3.8). Any contrast among the parameters in
an equivalent class is estimable.
In theorem 3.1, we prove that for fixed i=2...,c¢, {(®)=(B1- B:)+( Tx~ Tx) is estimable. Thus,

estimable functions between row(or column) and treatment effects are
(By-B2)+(11-12), (B1—B2)+(T10-71),
(a1-ag)+(T2-T1), (d1-ds)+(T1—T10).

In a block design, once we know the equivalent classes we know that only within classes
contrasts are estimable. In a row-column design this is no longer true. It could now happen,
as an example, treatment 1,2 and 3 are in different classes, but that 1,-212+73 is an estimable
function, in other words some between classes contrasts are estimable. Working with the

tetra—differences involving yu we find that only estimable between classes contrasts is 271-
T2-To.

Of course sum of estimable functions, such as (Bz-B3) + (213-T2-T1w) or (Bi-B)+(11-T2) +
(B1-B2)+(T10-T1) = 2(B1-B2)+(T10-T2), is estimable.

Example 3.2. When we exchange the treatment labels 6 and 2 in second row of the
design in Example 3.1, the EQ(i)’'s are changed as follows :

EQ@) : 11-13 = To-Tg = T9~Tg = T7—T5 = T4~Ts = T10~T9

EQ@3) @ 11-12

To~Tg = To~T1i1 = T7~Tn = T4~T3 = T~

With the same procedure as above, we can easily verify that the changed design is connected.
And so every contrast is estimable.
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