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Minimum Mean Squared Error Invariant Designs
for Polynomial Approximation

Joong-Yang Park”

Abstract

Designs for polynomial approximation to the unknown response function are
considered. Optimality criteria are monotone functions of the mean squared error
matrix of the least squares estimator. They correspond to the classical A-, D-, G~
and Q-optimalities. Optimal first order designs are chosen from the invariant designs
and then compared with optimal second order designs.

1. Introduction

A response function T(x) is the relationship between the expectation of the response

variable v and k independent variables x=(xi, xz, -, Xk ). Suppose that we wish to
design an experiment for investigating the response function over the experimental region

S={x!x’ x<1}. In practice the response function is either very complicated or unknown. An

experiment is usually designed for a multiple linear regression model for n(x), which can be
written as

y=flx)" B+e, (1)

where flx) is a vector of functions of x, B is an unknown parameter vector which is to be

estimated and € is an error term with mean 0 and variance 0. This approach always

causes some concerns about bias due to departures from model (1). An alternative design
strategy is to design an experiment for model (1) so that the precision of the least squares
estimator of B is robust against the departures. We thus consider the optimality criteria
which are monotone functions of the mean squared error (MSE) matrix of the least squares
estimator. Since the MSE matrix depends on the model departures, most of the previous
works on robust designs assume that the true model is

y=fx) B+z(x)+¢g, (2)
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where z(x) belongs to some specified class ¥ of functions of x. Markus and Sacks (1976),
Sacks and Ylvisaker (1978), Pesotchinsky (1982), Li and Notz (1982) and Li (1984) take

F={z(x)] lz(x)I<¥(x) for all xES}

with various assumptions about V. Huber (1975) and Weins (1992) takes

F ={2(x)| fsz(x)zdx5§ and fsf(x)z(x)dx= 0},

where { is assumed known. The unknown response function is mostly approximated by some
low order polynomial model. Assuming that f{x)’ Bis a polynomial of order d, z(x) can be

regarded as the remainder consisting of multiple monomials of order (d+1). That is, f{x) is
. . k a; k k+d
the vector of p multiple monomials B;Xi up to degreed where ;aisd and p= ( d ),
z(x)=h(x)" Y where h(x) is the vector of multiple monomials of degree (d+1) and 7 is
the vector of parameters corresponding to h(x). If n(x) and its first d derivatives are

continuous over S and (d+1)th derivative of T(x) exists, |z(x)| is bounded above. This

paper therefore takes
F={h(x) Y| lh(x) YI<8 for all x€S}, 3

where & is assumed known.

We consider the problem of constructing the optimal designs for polynomial regression
model y=f(x)’ B+& under the assumption that the true model is y=f(x)" B+h(x)" T+£
where h(x)’ 7 belongs to class (3). A similar design problem was researched by Box and
Draper (1959), who advocated the average MSE (AMSE) criterion for the estimation of mean
response T(x) and were followed by Box and Draper (1963) and Draper and Lawrence (1965).
These studies require an estimate of the magnitude of Y. In practice it is more plausible to
estimate the upper bound of the model departure, 8 in (3), than to estimate 7¥. In order to

overcome the dependency of AMSE on 7Y, minimum bias designs and designs for minimum

bias estimation have been studied by Karson, Manson and Hader (1969), Myers and Lahoda
(1975), Draper and Sanders (1988) and Park (1990). However, such designs place emphasis on
the bias component of AMSE. As mentioned above, our design objective is the estimation of

parameters. MSE versions of the classical A-, D-, G- and @-optimalities are employed as
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the optimality criteria. Section 2 presents the definitions of the optimality criteria and some
results on the optimal design problem. Optimal first order designs are derived in Section 3
and their performances are investigated in Section 4.

2. Optimal design problem

The design problem is to choose n, not necessarily distinct, design points in S. Then a
design € can be regarded as a probability measure on S defined by N(x)/n where N(x) is
the repetition of the design point x. We extend the definition of an experimental design to

include all probability measures on S. This is the so-called approximate design theory.

Henceforth ¢ and = will denote an arbitrary probability measure and the set of all probability
measures on S. The MSE matrix of the least squares estimator of B, standardized with

respect to n and 07, for given design & is

M1, 8 =M1 (&) + =5 Mi(EMAE)TY M2’ (M),

where M1(C)=Lf(x)f(x)’ d¢(x) and Mz(C)=Lﬂx)h(x)’ dé(x). In selecting a design,

it is desirable to minimize M(7Y,€) in the sense of a reasonable optimality criterion ®. We
assume that ¢ is a convex and increasing function defined on the set €& of all MSE

matrices M(Y,&) when h(x)’ Yand € range over ¥ and Z. Some of such criteria under

our considerations are tr(M(7Y,£)), det(M(Y,8)), supsd(x|v,&) and J;d(xl'r,ﬁ)dx ,

where tr and det are the trace and determinant and d(x|Y,&)=fAx)'M( ¥,8)f(x). They
are respectively denoted by 04, 0p, 0¢ and ©¢ and simply referred to as A-, D-, G- and
Q-optimalities in this paper. We suggest a minimax design &7, ie, one for which
supy O(M(7,&7)) = infz supg 0(M(7,£)) . Such designs will be called the minimax MSE

(MMSE) designs.
It is a heavy task to find the MMSE designs. We need to reduce the optimization problem
to a manageable problem. First note that

maxs {h{x)’ 1) =hmax Amax(YY )=hmax ¥ 7Y,

where Amax= maxs A(x)’ h(x)and chmax denotes the maximum characteristic root. Since
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h(x) is specified and hmex can be evaluated, class (3) is equivalent to T'={y|y’ v<3%}
where 8=05%/hma. Next consider YET such that ¥ vY=w?8<%. Then w'yerl,
wiy v=% and Mw'Y,&)-M(7,8)20 in the sense of positive definiteness. The
monotonicity of © ensures that it suffices to restrict our attention to To={Yl7Y" 1= 5y . If

8 is convex with respect to ¢, the minimax designs can be found from the invariant
designs. (Refer to Heiligers (1991, 1992) and Heiligers and Schneider (1992).) Unfortunately
due to the lack of convexity of ®, it is almost impossible to solve the optimization problem
directly. Noting that # and [ are invariant with respect to orthogonal transformations and

following the discussion in Kiefer (1959), we suggest that the MMSE designs are selected
from Zo, the set of invariant designs. The optimization problem is now reduced to the

minimization of supr,®(M(7,¢&)) with respect to & € Zo . In the following section we will

derive the MMSE invariant designs for d=1.

3. MMSE invariant first order designs

This section supposes d=1. That is, fix)’ B and f(x)" B+h(x)’ 7 are respectively

first and second order polynomials for which

fix) =1, x1, =, xc) ,
h(x) = (x%, =, x§ xixz, =, xc-1xx)”
B =(1,By, ~,Bx)

and
T = (Y1, =, Yek, Y12, , Yle-1k)' (4)

Mi(&)'s of invariant first order designs are given by

(1 0 AT P
M) (0 UZIk) and MZ(C)( 0 0/’

where H2= fs x.zdﬁ, Ix is the identity matrix of order k and 1k is the vector of ones. Then

M(Y,£) is obtained as
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( 1 0 )+n0—z( wh(Zra)? 0’
0 uzlx 0 0
The MSE matrix for invariant first order designs is characterized by H2. We thus write

o(Y,u2) for o(M(Y,8)). It can be verified that

0a(Y, 1) =1+kuz'+no 23 Xy,
op (Y, u2) =uz*+no 2 (ra)?,

06T, 12) =1+pzt+no 5 Tv)?
and
0o( T, 12) =1+k(k+2) tuztvno i y)?.

Therefore supr, ® is obtained by maximizing (2v:)® subject to ¥’ ¥ = 8 The maximum of

(3vi)? is obtained as k8 by the method of Lagrange multiplier. Let v = nd/06% , which can

be interpreted as the relative importance of bias versus varance. Assuming that V is given ,

we have
supr, 04( ¥, H2) =1+kuz'+kvpd,
supr, ®p( ¥, H2) =uz*+kvud*,
supr, 0G( Y, H2) =1+kpz'+kvnj
and

supr, 0o( ¥, 12) =1+k(k+2)™* uat+kvus

Convexity of supr,®(7Y,H2) is apparent. Optimal values of M2 are therefore obtained by
equating the derivative of each supr,®(Y,H2) with respect to Hz to zero and considering

the moment condition 0<u2<k™! as

Hea =min{k ™}, (2v) ¥},
W2p =k<1,
Woe =min{k™!, (2kv) ¥?)

and
2o = min{k , (2(k+2v) Y. 5)



Designs for Polynomial Approximation 381

It is interesting that D-optimal MMSE invariant designs do not depend on V. Let Va, Vg
and Vo denote the maximums of V such that the corresponding optimal value of W2 becomes
k' and independent of v. If v is larger than the maximum, optimal value of MWz decreases
as V increases. Table 1 presents the maximums for 2<k<8. It is evident that G- and @
-optimal MMSE designs are relatively more sensitive to v than A- and D-optimal MMSE
designs. The MMSE invariant first order designs can be constructed as 2% (fractional)
factorial designs consisting of the vertices and center point of S. Weights for each vertex

and the center point are respectively u22'* and (1-u2).

Table 1. Values of va, vg and Vo.

Vi VG Vo

4.0000 2.0000 1.0000
13.5000 45000 2.7000
32.0000 8.0000 5.3333
62.5000 12.5000 8.9286
108.0000 18.5000 13.5000
171.5000 24.5000 19.0556
256.0000 32.0000 25.6000

00~ DWW X

4. Performance of MMSE invariant first order designs

In this section we study the performance of the MMSE invariant first order designs derived

in Section 3. If the true model is a first order polynomial, then the optimal value of W2 is

k! irrespective of the optimality criterion. This results from substituting v in (5) with zero.

Therefore, as long as the incorrectly assumed value of V is not larger than the maximum of
Table 1, the MMSE invariant first order designs coincide with the optimal designs for the
true first order polynomial model. When a first order polynomial model is assumed and model
departure caused by second order terms is concerned about, either the MMSE invariant first
order designs or the optimal second order designs can be used. Thus it is necessary to
compare the performances of these designs.

For investigating the performance of a design, Vining and Myers (1991) suggested plotting
maximum and average MSE of the estimated response at every sphere in S. However, in

order to examine the overall performances of the MMSE invariant first order designs, we
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consider maximum and average MSE of the estimated response over the experimental region

S. Let g(x)=(f{x) ,h(x)) and Mi(&)= Lg(x)g(x)’ df(x), where flx) and h(x)

are given by (4). Denoting by &7, the A-optimal second order designs minimizing
tr(M1(&)), we define the overall efficiencies of the A-optimal MMSE invariant first order

design €74, relative to &4, . as

supr, Ld(xl Y, &) dx

sups d(x1€%,)
supr, sups d(x|7, &%,)

eff max, =

’

and effavg, =

where d(x!|84,)= g(x)’ Ml_l(ﬁ'Az)g(x). Other efficiencies eff max, , eff aven , €ff maxc ,
eff avge , €ffmaxe and eff avg, are similarly defined. In Figures 1 and 2 the efficiencies are

plotted against Vv for k=2. Plots for k23 reveal similar trends except that the range of V
for which each efficiency is higher than 1 is wider. G- and @- optimal MMSE invariant first
order designs perform as good as the corresponding optimal second order designs for a wide
range of V. However, effmax, and effavg, decrease rapidly. This is mainly because V is not
reflected in D-optimal MMSE invarinat first order designs. Consequently efficiency of D
-optimal MMSE invariant first order designs to D-optimal second order designs is very
sensitive to V. When a decision is made on whether we will use a MMSE first order design

or an optimal second order design, relatively more accurate estimate of Vv is required for D

-optimality than for other optimalities.
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Figure 1. Plot of effmyx for k =2.
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Figure 2. Plot of eff,, for k= 2.



Designs for Polynomial Approximation 385

References

(1] Box, GE.P. and Draper, N. (1959). A Basis for the Selection of A Response Surface
Design, Journal of American Statistical Association, Vol. 54, 622-654.

(2] Box, GEP. and Draper, N.R. (1963). The Choice of A Second Order Rotatable Design,
Biometrika, Vol. 50, 335-352.

[3] Draper, N.R. and Lawrence, W.E. (1965). Designs Which Minimize Model Inadequacies:
Cuboidal Regions of Interest, Biometrika, Vol. 52, 111-118,

(4] Draper, N.R. and Sanders, E.R. (1988). Designs for Minimum Bias Estimation,
Technometrics, Vol. 30, 319-325.

[5] Heiligers, B. (1991). Admissibility of Experimental Designs in Linear Regression with
Constant Term, Journal of Statistical Planning and Inference, Vol. 28, 107-123.

[6] Heiligers, B. (1992). Admissible Experimental Designs in Multiple Polynomial Regression,
Journal of Statistical Planning and Inference, Vol. 31, 219-233.

[7]1 Heiligers, B. and Schneider, K. (1992). Invariant Admissible and Optimal Designs in Cubic
Regression on the Vv-ball, Journal of Statistical Planning and Infrence, Vol. 31,
113-125.

[8] Huber, J. (1975). Robustness and Designs, In: Srivastava, J.N. ed., A Survey of Statistical
Design and Linear Models, North Holland, Amsterdam, 287-303.

9] Karson, M.]., Manson, A.R. and Hader, R.J. (1969). Minimum Bias Estimation and
Experimental Design for Response Surfaces, Technometrics, Vol. 11, 461-475.

[10] Kiefer, J. (1959). Optimal Experimental Desings (with discussion), Journal of Royal
Statistical Society Ser. B, Vol. 21, 272-319.

[11] Li, K.C. (1984). Robust Regression Designs When the Design Space Consists of Finitely
Many Points, Annals of Statistics, Vol. 12, 269-282.

[12] Li, K.C. and Notz, W. (1982). Robust Designs for Nearly Linear Regression, Journal of
Statistical Planning and Inference, Vol. 6, 135-151.

[13] Markus, M.B. and Sacks, ]. (1976). Robust Designs for Regression Problems, In: Gupta,
S.S. and Moore, D.S. eds. Statistical Theory and Related Topics I, Academic
Press, New York, 245-268.

[14] Myers, R.H. and Lahoda, S.J. (1975). A Generalization of the Response Surface Mean
Squared Error Criterion with A Specific Application to the Slope, Technometrics,
Vol. 17, 481-486.

[15] Park, J.Y. (1990). Designs for Estimating the Difference Between Two Responses,
Communications in Statistics-Theory and Methods, Vol. 19, 4773-4787.

[16] Pesotchinsky, L. (1982). Optimal Robust Designs: Linear Regression in Rk, Annals of

Statistics, Vol. 10, 511-525,
[17] Sacks, J. and Ylvisaker, D. (1978). Linear Estimation for Approximately Linear Models,
Annals of Statistics, Vol. 6, 1122-1137.



386 Joong-Yang Park

[18] Vining, G.G. and Myers, RH. (1991). A Graphic Approach for Evaluating Response
Surface Designs in Terms of the Mean Squared Error of Prediction, Technometrics,
Vol. 33, 315-326.

[19] Weins, D.P. (1992). Minimax Designs for Approximately Linear Regression, Journal of
Statistical Planning and Ingrence, Vol. 31. 353-371.



