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ABSTRACT

When a random sample is taken from a certain class of discrete and
continuous distributions whose support depend on two parameters, we
could find that there exists the complete and sufficient statistic for pa-
rameters which belong to a certain class, and formulate the uniformly
minimum variance unbiased estimator( UMVUE) of any estimable func-
tion. Some UMVUE’s of parametric functions are illustrated for the
class of the distribution. Especially, we find that the UMVUE of some
estimable parametric function from the truncated normal distribution
could be expressed by the version of the Mill’s ratio.
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1. INTRODUCTION

It is well known that the completeness is not a property of a statistic, but a
property of the family of distribution of the statistic. Stigler(1972) explained
this point clearly with the motivation behind the use of the word “complete”.
He illustrated a random variable X having a discrete uniform distribution with
probability density function (p.d.f.) given by

_f 1/, ifz=1,...,0
fo(z) = { 0, otherwise ,

where 8 € O. Suppose that the parameter space @ = N — {m} , N is the set
of all positive integers and m is any specified positive integer. Then X is not
even boundedly complete, even though X is a sufficient statistic. Thus, we
can see immediately that the family of the distribution induced by X is not
complete.

Bahadur(1957) asserted in general that if the minimal sufficient statistic is
not complete, then there must exist some estimable parametric function that
does not admit a uniformly minimum variance unbiased estimator (UMVUE).
However, Stigler(1972) showed that even though the random variable X is not
complete, there exists a complete sufficient statistic T'(X) with

\_ ) = if ¢ #m
T(l)_{ m+1, fz=m,
and the UMVUE of 8 is obtained as being a function of T(X) and essentially
a function of X such that

2r -1, ifz=1,....m—-1,m+2,...
2m, fz=mm+1.

U(z) = {

He proved this result by using the well-known Lehmann-Scheffe theorem
(See Lehmann 1983, p 77).

Via Stigler’s example, Ghosh and Datta(1989) showed that every paramet-
ric function 7(8) is estimable and has a UMVUE of v(0). Ghosh and Datta
emphasized the importance of the minimality in Bahadur’s theory and found
that the UMVUE of () could be obtained as a function of 7' which itself
is a function of X. They explored this result within the cases of discrete
distributions with support depending on parameter.
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When density functions are absolutely continuous on (6, ¢) and (c, 6),
where ¢ is a constant, which are called a Type I or II truncation parameter
density, respectively. Tate(1959) and Zacks(1971) obtained the UMVUE of any
estimable parameter function, which is the function of the minimal sufficient
complete statistic X(;) = min{Xy,---, X,} or X(,) = max{X7,---, X,.}.

In this paper, we extend the results of Ghosh and Datta(1989), Tate(1959)
and Zacks(1971) not only to the cases of discrete and continuous distributions
with support depending on two parameters but also to the cases of which X
and X(,) are not complete statistics any more. Under such circumstances,
we find that there exists the complete and minimal sufficient statistic for pa-
rameters which belong to a certain parameter space. Those are discussed in
section 2. Moreover we obtain the UMVUE’s of every parametric functions
for discrete and continuous density functions in section 3. Also we can show
that results of Ghosh and Datta, Tate and Zacks are the special cases of our
results. In section 4 many examples for some parametric functions consisted
with two parameters are illustrated.

2. MINIMAL SUFFICIENCY AND
COMPLETENESS

2.1 Discrete Models

Consider parameter space © = {0,,0,,...} C I, a set of integers. For two
parameters §; and 6; (0; < 0;) which belong to ©, let X be a discrete random
variable with p.d.f. given by

h(z)/S5(0;,6;), for x € A(6;,90;)

0, otherwise ,

Pgl-'oj(x‘) = Pghgj(X = :IJ) = { (21)

where A(6;,6;) is a non-empty subset of I and

S6.,0)= Y ).
$€A(9.,BJ)
Note that A(8;,0;) = {¢ | = = 6,,...,6;} may not be a subset of © (see
examples 4.1 and 4.2).
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Let X4,..., X, be arandom sample of sizen (n > 2) from the distribution
of X given by (2.1). Then for any 6;,0; € O,

Pghgj(Xl = Tty.. .,Xn = :l?n)

n

=TT hlex)I{xk € A(6:,8;)}/5(6:,6,)"

kol
-

n

= I he) Hza € A 0,)} {z(n) € AB:.0,)}/S(0:,0)",  (23)
where z(;) = min{z;,...,2,} and z(,) = max{z;,...,z,}. By the factor-
ization theorem, (X(1y, X(»)) is jointly sufficient for (6;,6;) but may not be
minimal. In order to find a minimal sufficient statistic for (6;,6;), we first
show the existence of the sufficient and complete statistic. Here we might ex-
tend a mapping T'(-) of Ghosh and Datta(1989) to the support depending on
two parameters, so that define a function T'(-) from A(6;,6;) to B(8;,6;) = {t |
t =0;,...,0,}, which should be a subset of ©. Since the support A(6:,6;) of
the random variable X may not belong to the parameter space ©, (X (1), X(n))
could not be complete and minimal as well. By considering a function T'(-),
-~the support B(6;,8;) of the random variable T must belong to the parameter
space O (see examples 4.1 and 4.2). Now (2.3) will become

n

H tk I{t(l) € B(G,,H )}]{t(n) €B 01,0 }/S 9,,0 ) (2.4)

k=1

Then S(0;,0;) in (2.2) equals to

5(0:,8;,)= > h(ty). (2.5)
tx€B(6;,0;)
Note that (T(1), T(n)) = (T(X(1)), T(X(ny)) is sufficient for (6;,6;).

Define P! as a certain class of distributions !”Pg 4, for all 6,0, € O},
where P o, (t1tn) = Po,0,(T(y = 11, Ty = ¢ ). Now we will show the family
pT 1nduced by T(l) and T(n) is complete. For Oy, and 8, € B(6;,0;) with
1 < k<I<j, Pio(Tuy < 0kTim < 6) = [FT(8)]" — [FT(6:) — FT(6x)]",
where FT(t) = Py q,(T < t), so that T(yy and T(,) has the jointly p.d.f.(see
David (1981))

PoTi,o,(ak,az) = Py 5,(Taty = 0k, T(n) = 61)
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= —[FT(0) - FT(8)]" = [FT(6i_1) — (9;c )"
HFT () = FT(0-0)]" + [FT(81-0) — FT(60)]".

From (2.4) and (2.5), one gets

Py o;(T(1y = 0k, Tiny = 01) =
[S(0c,0))" + S(Ox41,01-1)" — S(Ok1,00)" — S(Ok, 01-1)"]/S(8:,0;)™, (> 0)

where S(0x,6;) = 0 for any k and [ such that | < k.

Consider any function g(-,-) with
Egngjg(T(l),T(n)) =0 forall 6, 0]' € 0.

For the sake of simplicity, henceforth we will define S(6;,6;) as S;; . Then this
implies

J 2
22 90k, 00) (St + Siyrior — iy — Ski-a)/S(6:,6;)" = 0.(2.6)
k=i l=k

For i = j, (2.6) implies that ¢g(6;,0;) = 0. Hence we explore the case that
¢ < j. Under 0,4, and 6; € O,

EB.'.H,OJg(T(l)a T(n)) = 07

which implies that

J J
E Zg O0r, 00)[Si 1 + Sky1-1 — Sy — Siual/SE; =0, (2.7)

k=141 I=k

With similar arguments under 8,4, and/or 6;_,, one obtains

j=1j-1

DD 90k, 0[Sk + SEyricr — Sivan — Ski-il/S1; =0, (2.8)
k=i 1=k
i-1 j-1

Z Eg(ﬂk,Ol)[S,':‘, + Sl?+1,l-—1 - Sl?+1,1 - 52,1—1]/5&' =0. (2.9)
k=i+1 =k

Taking calculation for (2.6) — (2.7) — (2.8) + (2.9), we get for all 6;,6; € O,
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9(0:,0;)[S?; + Sfrjo1 — St — Siyal/ST; =0,

so that ¢(8;,6;) = 0 for all 4;,,0; € ©.  We conclude that for all 8,,0; €
O (<), Esp,9(Ta)Tn)) =0 implies g(T(1), T{n)) = 0 except on a set of
points that has probabilty zero, i.e., the family PT induced by T(;) and T{n
is complete. Therefore, one can conclude there exists (7}y), T{,)) which is the
joint minimal sufficient and complete statistic for (8;, ;).

2.2 Continuous Models

In order to distinguish parameters of discrete density function, we will use
different subscriptions. For parameters §; and 8, € © C R, let X be'a
continuous random variable with p.d.f. given by

h(z)/S(8:.82), if z € A(6y,6,)

= 2
for.0:(2) {0, otherwise (2.10)

where A(0;,6;) is some non-empty subset of real line which is an interval be-

tween 6; and 6,, and for all §, and 0; € ©, 5(6,,0,) could be defined as

S(8;,6;) =/ h(z) da.

z€A(0:,62)

Let Xi,..., X, be a random sample of size n(n > 2) from the distribution

of X given by (2.10). Then

=1 h(zi)
[$(61,62)]"
H?:l h(z;)
[S(61,62)]"

f@],ez(mla*"’zn) I{$,€A(01,02)}

Hz gy € A(81,02)H {z(,) € A(6:1,02)}{2.11)

where z(;) = min{zy,...,z,} and z(;) = max{z,,...,z,}. By the factoriza-
tion theorem, (X(1), X(»)) is jointly sufficient for (6,,62). But (X(y), X(»)) may
not necessarily be a minimal sufficient for (6;,6;). In order to find a minimal
sufficient statistics, find a function 7'(-) from A(6,,6,), which may not be a
subset of O, to a counter domain B(6;,6;) = { an interval between 6; and 6,},
which is necessarily a subset of ©, and satisfies that for ¢, and t, € B(6,,6,)
with #; < ta,
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{T(z)) <, T(zm) <o} iff {zg) Sty 2y < ta)

Note that the function 7T'(:) is not always an identity function on a domain
A(6,,02) (see example 4.4). Hence (2.11) turns out to be

Foraa(@1s e s ) = [S—@%l I{T(2y) € B(6:,62)} [{T(z(ny) € B(6y,62)}.

Therefore (T1,T;) = (T(X 1)), T(X(n))) is jointly sufficient for (6;,6;) by the
factorization theorem.
Now we will show the family of distribution induced by (77, 73) is complete.

The family of distributions would be denoted P7 = {7 , ; 6; and 6, € O}.
For t; and t, € B(6,,0,) with t; < t5, (T}, T3) has the joint c.d.f.

Ff g (tit) = Py <ty, T, <1y
= P[{X(l) < t, X(n) < t2]
= [F,6,(t2)]" — [Fo, 0,(t2) — Fo, 6,(£1)]", (2.12)
where Fy, o,(-) is the cumulative distribution function (c.d.f.) of the random

variable defined in (2.10). If the joint c.d.f. is differentiable with respect to ¢,
and t; € B(6,,0;), then one can get

2 S(ty, ¢ _
Ffo(ts) = FLo(t)) = | fo0(x)de= Sty ta) for 1, <ty (2.13)
tq 5(01,02)
and from (2.12) and (2.13), we obtain
fa 6, (t1,12) = n(n = 1)[S(t1, )" 2h(t1) h(t2)/[S(61,62)]" (2.14)

But if the joint c.d.f. Fohg?T(tl,tg) is not differntiable at some points ¢; and
t; € B(6,,0;), the joint p.d.f. can be defined as

for0,T (t1,t2) = Fo, 0,7 (t1,t2)—Fo, 0,7 (117, ta)—F, 0, T (t1, 8™ )+ Fo, 0, (817, 127).

Hence, in order to show the completeness we consider any function ¢(77, T3)
such that

Eg 6,l9(Th,T3)] =0 for 6, and 6, € O.
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The distribution function of 77 and T, might be expressed as the linear com-
bination of absolutely continuous and discrete distribution functions. For the
discrete parts, we already showed the completeness for the family induced by
(T(1y, T(ny) in section 2.1. So we here prove the case of absolutely continuous
distribution.

The above expectation implies that for all #, and 6; € ©

E91,92 [g(Tla T2)] =0,
iff
62 t2 Ct n—2
/0 /6 gty t2)[S (b, )" 2h(ty)h(ty) dtrdty = 0.

Taking the second derivative of the above equation with respect to both 6,
and 6, turns out to be

82 62 ta
06,96, /a /9 g(t, 82)[S (b1, 02))" k(1) h(t) dirdty = 0,
iff )
s o 9t 8IS, Gal" R ()t =,
iff
g(ol’02)[5(01a02)]n—2h(01) = 0_
iff

9(01702) = 01

for all 6, and 0, € O except on a set of points that has probability zero.

Therefore the family of distributions P7 induced by (T'(Xq)), T(X(n))) is
complete. Since the complete sufficient statistic is always minimal, (T(X()),
T(X(n))) is the complete and minimal sufficient statistic for (8;,8,). Hence af-
ter combining this completeness for continuous models with that of discrete
models, we could state the following theorem.

Theorem 1. If X,,..., X, is a random sample of size n(n > 2) from the
distributions given (2.1) and (2.10), (T'(X(1)). T(X(n))) is the jointly complete
and minimal sufficient statistic for (4,,8;).
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3. UMVUE
3.1 Discrete Models

We consider every estimable parametric function 7(0:,0;) for 6,,6, € O.
Now it will be shown that every parametric functions (6, f,) has an unbiased
estimator based on (T(y), T(r)). Then this estimator is the UMVUE of v(6:,6,)
by the Rao-Blackwell-Lehmann-Scheffe Theorem(see Lehmann 1983, p.77).

In order to prove the existance of UMV UE, suppose U(T1y, T(ny) 1s an un-
biased estimator of v(6;, ;) for all 0;,0; € O.

Eg.0,U(T): Tiny) = 7(0:,0;) = v ;(say),
iff
J

J
7:',]'51'7,3 = Z Z U (s, 01)[52,1 + Sl?+1.1—1 - Sl?ﬂ,l - Sl?,l—l]’
k=1 l=k

That is,

n — . . n PN n — . . n
'Yi,jSi,j = 71+1,15i+1,j + 71,J—15i,3—1 7t+1.J—1Si+1,J—1

+U(0:, 05)[S57; + Sy oy — Sia,y — STl

2,7—1

Therefore, the UMVUE of 7(0;,0;) could be expressed as

n

n n n
0. 0.\ = ’Yi,jsi,j + ’Yz‘+1,j—15i+1,j—1 — 'Yi+l,jS1+1,j - ’7i,j—15i,j—1
U( iy j) - ’
St 48 . Gn_ . _ GQnr
i, i+1,5-1 141,7 1,7—1

where 6; and 6, are the observed values of T4y and Ti,), respectively. So the
following theorem could be stated.

Theorem 2. Let (7y),T{»)) be the jointly complete and minimal sufficient
statistic for the distribution with the support B(6,,0;) defined in (2.5). The
UMVUE of any estimable parametric function y(6;, 6;) could be expressed as

Y, 85)S iy )™ + Y (tigr, t-1)S(tigq, ti-1)"
—Y(Ei1, 85) S (i, )" — (8, 1520) Sty 12"
St 1) + S(tigr, tio)™ — S(tipr, )" — S(ti, t;_)™

where t; and t; € B(6;,0;) with t; < t;.

U(ti,t;) = (3.1)
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If we consider a support of a random variable depends on one parame-
ter, for example 6,(8; is a given constant), then it was the task of Ghosh and
Datta(1989). Since there is no interest with the terms including ¢;4 in (3.1),
for the observed value t; of T{y), the UMVUE of ¥(6;) could be formulated as

following :

Corollary 1. The UMVUE of v(0;) is

_()S8(t)" = (i) S (t-)" .
Utts) = S1(t;)" = Si(tj-1)" ’ (32)

where Si(t;) = 5(6:,;|0; is constant ) = Y7, h(k).

This UMVUE of 7(8;) coincides with (2.8) expression in Ghosh and Datta(1989).
Now assume that @ is a given constant in B(6;,6;), and a support de-
pends on 6; only, so that support B(6;,6;) may be written By(0;) = {t =
b;,...,0;|0;is constant}. And for t; € By(6;), S(t,6;) might be S(ti,0; | 0,
is constant) = Sy(t;) = Zi’zti h(k). With the similar arguments to obtain the
formulation (3.2), the UMVUE of v(6;) could be expressed as following :

Y(t:)Sa(t)" — y(tig1)S2(tigr)” (3.3)

Corollary 2 Ut;) = Sa(ti)* — Sa(tip1)” '

where ¢; is the observed value of T,).

Note that for any §; € O, the p.d.f. of the minimal sufficient and complete
statistic T{y is given by

Py (T = tx) = Po.(Ty 2 te) = Po(T) 2 Lkt
=1 = FT(tsa)]" = [L = FT (&))"
= [Sa(tk)™ — Sa(tes1)"]/ S2(6:)".

3.2 Continuous Models

Next, we show that every parametric function r(6,,6;) has an unbiased

estimator based on (Ty,T:) = (T(Xu)), T(X(n))), which is then the UMVUE
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of 4(6y,02) by Rao-Blackwell-Lehmann-Sheffe theorem.

Theorem 3. Let the random variable (73, T3) follow an absolutely contin-
uous distribution with support B(6,,6;) depending on two parameters. Then

the UMV UE of any parametric function v(6y,6,) based on (T, T3) is

712”5 + nS(M'S2’ + 12'S1") + n(n — 1175152’ + nySSY,

Uty ta) = — n{n = DA R(E) ’

(3.4)

where v, 7/, 72’ 112", S, Si', S2’ and S1,” is defined in equation (3.6) with
substituting 8 with t.

Proof. Suppose that there exists U(7Ty, T3) which is an unbiased estimator
of 4(60,,8,) such that, for all §; and 6, € ©

E91192 [(](Tl, T2)] = ’7(01,02).

One gets from (2.14),

02
/0 j ‘U (t1,t2)n(n=1)[S(t1,2)]" " 2h(t1 )h(t2)dt dtz = ¥(61,62)[S(61,62)]". (3.5)
1 1

Taking derivative on both sides of (3.5) with respect to #; and 8,, the RHS
becomes

82
00,00,
_— ')’12”5” + n‘)’]’Sg’Sn—l + N’YQ’SH_ISII

7(01’ 02)[5(01 ’ 92)]71

+n(n - 1)")’5”_251,52, + Tl’)’Sn—lslz’l, (36)
where v = ~(6,,602), 7' = 0v/00y, Yo" = 0*v/00,00,, S = S(6,,6,),

S = 0S/08; and S,y" = 3*S]06,06,.
The LHS of (3.5) becomes

[ t2
—_ n-2
801802 / / tlst2 (n 1 [ tl,tQ)] h t2)dt1dt2

= 9—691‘ /(:2 U(t1,02)n(n — 1)[S(t1,0:)]" " *h(t1)h(62)dt;
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= —U(8y,02)n(n — 1)[S(6y, )] 2k (6, ) (62). (3.7)

Put (3.6) and (3.7) together, then

12" 5% + nn'Sy'S + ny/SS + n(n — 1)y5/'S, + nvSSy,”
' —n(n — 1)h(6;)h(8;)
112" 5% + 0SSy + %'S)) + n(n — 1)75,'Sy’ + nySSY,
- n(n — 1)h(01)h(02) ’

if h(61) # 0 and h(62) # 0. Therefore, the uniformly minimum variance
unbiased estimate of ¥{6,,6,) corresponding to the observed value (¢{,t;) of
(Ty,T3) is given by (3.4). 0

Next as restricted cases of Theorem 3, we consider the absolutely continu-
ous distribution whose support depends on one parameter. The p.d.f. in (2.10)
would be given by

fol2) :{ h(:c)éS(H). if z € A(H) (3.8)

otherwise ,

U(61,0;) =

where A(#) can be either A(8, ; 6, = 0) with constant 8; or A(#; = 0 ; 0;)
with constant 6,, which are denoted as A;(f) and Ay(8), respectively. Each
parameter space ©; and O, would be subsets of {0 |6 > 6,} and {6 | 6 < 6,},
respectively. Also S(8) in (3.8) is defined as, for all § € ©; or O,,

S(8) = /mw) h(z)dz.

In two cases of A(6), there exists some function T'(-) which could be de-
fined so that Ty = T'(X()) or T3 = T(X(n)) could be the minimal sufficient
and complete statistics. When X is a discrete random variable, Ghosh and
Datta(1989) already obtained the UMVUF of any parametric function ~(6)
with the support A;(#). We extend to get UMVUE with A,(6) as well as
A1(6) in section 3.1. And when h(z) is absolutely continuous over two kinds of
A(8), Tate(1959) and Zacks(1971) obtained the UMVUE of ~(#) which is the
function of the minimal sufficient statistic X(;, or X(,). Now we can state that
every parametric function v(#) has an unbiased estimator based on T} and 75,
which is the UMVUE.

First, we deal with A;(#), where Zacks called this density function as a
Type I truncation parameter density.
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Corollary 3. The UMVUE of () based on T; is

_Y()S(0.1)
nh(t)

where t is the observed value of T} .

Us(t) = — ~(t) if h(t) £ 0, (3.9)

Now consider the case of A;(8), where Zacks called this density function a
Type II truncation parameter density.

Corollary 4. The UMVUE of 4(8) based on T} is

7'(1)5(61, t)

Ur(t) = (t) + k(D)

i A(t) £0, (3.10)

where ¢ is the observed value of 7.
These two corollaries coincide with Tate(1959) and Zacks(1971)’s Theorems
if Ty and T, are X(y, and X, respectively. _ -

4. SOME ILLUSTRATIVE EXAMPLES

4.1 Discrete Uniform Distributions.

Consider a parameter space © = { even integers}. For any 6,,0; € O, let
the random variable X have the following p.d.f.

Pghoj(.’lf) = 2(0] —0; + 2)—1, for z € {9{,0,‘4_2, e ,91‘_2, 01} CcoO

= 0, otherwise.

Then (T(), T(n)) = (X(1), X(n)) is a jointly minimal sufficient and complete
statistic, and from (3.1) the UMVUE of 4(6;,0;) = 0; + 6, can be obtained

U(Xa), X)) = [(Xy + X)) (Xn) — Xy +2)7
H( Xy + Xy X(n) — X1y — 2)"

—(Xay + Xn) + 2)( Xy — Xy)"
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—(Xay + Xny — 2(Xn) = X))
/(X = Xy +2)" + (Xpy — Xy = 2)"
—2(X(ny — X))

If n = 2, one can easily get and prove that the UMVUE is X(1) + X(2).
For 8;,0; € ©* = { integers } — {m,m+1}, where m is any specfied integer,
let X be a random variable whose p.d.f. is given by
Py g ()= (0; —0; + L, forxe {6, m~1mm+1Lm+2.---,0;}
= 0, otherwise.

In order to find a complete statistic. we may consider the function T'(-) such
that

m—1, ifz=m
Tx)=<X m+2, fe=m+1
x, otherwise.
Then it is trivial to show that (T{1),T(»)) is a jointly minimal sufficient and

complete statistic. Therefore the UMVUE of v(6;,0;) could be obtained by
-using (3.1) in Theorem 2.

4.2 Restricted Discrete Triangular Distribution.

For 6 € ©* = { negative integers } — {m}, where m is any specfied negative
integer, let X be a random variable whose p.d.f. is given by
Py(z) = —22/[0(0 —1)], forz € Ay(0)={0,0+1,...,~1}
= 0, otherwise.

Note that S3(8) = Y.72,(—2z) = (6 — 1) and X{y) is no longer complete. In
order to find a complete statistic, consider the function 7'(-) such that

__J m—1, ifz=m
- l z, otherwise.

T(z)

Then there exists a minimal sufficient and complete statistic 7{;). And the

UMVUE of v(8) = 8 € ©* can be found
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ToH Ty~ )" = (T + )" T, .
s — 1@ ,(1) (1) (1) .
U(Tw) T T - D =T+ T, ift#m-—1

— (m=D" MmO (my )"t e _
— (M- (m=2)n—(m¥1)mmn Ht=m 1.

If n =1, one can easily show and prove that the UMVUE of v(0) = 6 is

ot it m—1
R e A

Im—1 "
4.3 Truncated Triangular Distribution.
For all 8;,0;, € © = { natural numbers }, let

6,8, —

0, otherwise.

Notes that 5(6;,0;) = i]=0,' 2z, and (T(y = X1y, T(ny = X(n)) is jointly
minimal sufficient and complete. Taking v(6;,6;) = (6; + 6;)~2, the UMVUE
of (6; + 6;)7? can be given by U(T\y), T(n)) as the following :

UXay X)) = (X + X)) 2 (Xny = Xy = D"
Xy + X)) ( Xy — Xy +1)"
—(Xa) + Xy + 1) (X(n) — X(g))"
~(Xa) + Ximy = D" (X — X1))7]
[(Xay + X)) (Xm) — Xy = D"
H(Xa) + Xen)"(Xw) = Xy + 1)"
—( Xy + Xy + 1)"(Xmy — X1))"
—(Xa) + Ximy — D"(Xmy = X)) if X(gy < Xn)
= 1/(2X(1))n, if X(l) = X(n).

If n =2, the UMVUE of (6; + 0;)7%is
U(Xu), X2)) = 1/[4X 1) X )], if X1) < X(g)

Now we take the expectation of the above UMVUE.
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b &
1
E[lU(X 0, X)) =
{(1)» 2 (2) ] tlz::el t’z;l [4111“2]
_ 1
B (0; +0;)? ’

which completes the unbiasedness.
4.4 Restricted Continuous Uniform Distribution.

For ; and 0, € @ ={0|0< 0 <8, or 6> 0y+2r}, where 0y and r are
known constants, let Xy, X,,..., X, be a continuous random sample of size n
which follows a uniform distribution from 6, to 6;,. Then h(xz) and S(0y,6)
in (2.1) turn out to be 1 and (0, — 8;), respectively. For any 6 € ©~, the
support Ay(8) is {z |0 <z < 0}. If 6 € O* is less than 8y , then it is trivial.
Hence we consider the case when 8 > 6, + 2r. Then A,(f) could be written as
{SoU S; U S3U 53}, where So = {z |0 < a <}, Sy ={a|b <& < bp+r},
So={x]0+r<z<by+2r}and S3={z|b+2r <z <0}

If we consider nontrivial function ¢o(-) given by

0, forax e Syor S,
golx) = a, forze S
—a, forz e S, ,

where a is any non-zero constant, then it 1s easily seen that
Eglgo(X)] =0 for allbfe O,

so that the non-trivial function gg is an unbiased estimator of zero. Thus, the
random variable X is not complete even though it is sufficient.

It can be found also that there exists a complete sufficient statistic, T'(X ),
such that

_ T, for x € Sp or 53
T(:r,)_{ 0o+ 2r, forre SyorS,.

Then for any 6 € ©*, one gets the p.d.f. of T given by

r,,,_ ) 1/8, fort € Spor Ss
fo () “{ 2r/6, fort =0y +2r .
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It notes that support of the random variable T is a subset of the parameter
space O, whereas support of the random variable X is not a subset of ©*,

Since this p.d.f. of T"is a convex combination of a continuous and a discrete
density function, we could use (3.10) for continuous parts and (3.2) in section
3.1 or (2.8) of Ghosh and Datta (1989) for a discrete point in order to obtain
the UMVUE of v(0) = 0 as

2t, for t € Sy or S

7 =
) {2(00-{—7'), fort € 5 or 5, . (4.1)

Also the UMV UE above could be expressed as a function of the random vari-
able X, via the function of T'(X),

2x, forr € Sy or S

7 —
Ulz) = { 2(6p + 1), forz € S or S,.

This details are described in Appendix with some notes.
4.5 Continuous Triangular Distribution.

For any 6, and 8, € © = {6]6 > 0}, let X,,.... X, be a random sample of
size n whose distribution is

f ( ) — 21:/(0% - 0%)» for z € A(01302) = {01 <z < 92}
61,68 = 0, otherwise.

It is seen that h(x) = « and S(6;,6,) = (62 — 6%)/2. From (3.4), the UMVUE
of v(61,0;) = (61 + 63)/2 could be expressed.

Xy + X)) [2(n — DX (1) X(n) — (X)) — X(n))?]
4(n — 1) X1y X(n)

v rd (
U(Xqay, X)) =

4.6 Truncated Normal Distribution.

For 6 € © = {0 |6 > 0} define a truncated normal distribution as

o) forz e {0 <z <0}

oy = { i

0, otherwise ,
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where h(z) = ¢(z) and S(8) = ®(8) — 1/2, with ¢(-) and ®(-) are p.d.f. and
c.d.f. of the standard normal random variable, respectively, and note that
T(X) = X(»)- Then from (3.10), we might express the UMVUE of any es-
timable function 4(80) as the followings :

U(Xwmy) = 7(Xm) + Y X)) [®(X) = 1/2]

nd( X))
_ Y (X@wy), 1 , .
(X)) 2
= 1(Xm) + lMR(XM))» (4.4)

n

where R(z) = [1 — ®(z)]/¢(z) and R(z) = [®(z) — 1/2]/d(x) are well known
as the Mill’s ratio (see Kendall and Stuart, 1976). Therefore, the UMVUE
in (4.3) and (4.4) of any parametric function y(#) for the truncated normal
distribution could be well approximated by using the M:ll’s ratio.

APPENDIX

It is trivial when parameter 8 belongs to {0 < # < 6y}, so we consider the
case € {6 > 0, + 2r}. Then the UMVUE of 4(8) = 0 is obtained as the

followings :
1) Continuous parts ( use (3.10) );

Ut) = ~(t)+5(t)
t+t=2t, . forte Sy,
t4 [ffo1dt + 2rI{t = 0y + 2r} + f5 4o, 1dt] =2t, fort € Ss.

2) Discrete part (use (3.2) in section 3.1 or (2.8) of Ghosh and Datta(1989)) ;
Since v; = fo+2r, S; = [ 1dt+2r = Op+2r, vi.1 = o and Si—y = J3° 1dt = 8o,

(00 + 27")2 - 002

U = T4 720 =0,

=200+ 2r fort =6y + 2r .
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Forany § € @ = {6 ]0<0 <6, 0r 8 >0, +2r}, the expectation of the
estimator U(T) in (4.1) is

JE2t/0dt = o, for 6 € (0, 6;)
EolU(T)] = [ 2t/0dt + (200 + 2r)2r/01{t = 6, + 21}
+ fo 120 2t/0dt = 6, for 0 € (6o + 2r, c0).

Also the expectation of U(X) in (4.2) rather than U(T') can be obtained.

¢ 2z
Zdr =0 for0<8<4g
E ] X — 0 g ] — Yo
ovx) { (oo + fa, g Boda + [yt 2ty = 9, for 6> 0, + 2r .
U(X), which is identical with U(T), is unbiased for § € ©*. Since T(X) is a
complete and minimal sufficient statistic, this is the UMVUE.
If we consider © = {6 | > 0} rather than ©*, then the UMVUE of § € ©

is well obtained as
U(X)=2X for 0<z<0.
Now the variance of the UMVUE U(X) in (4.2) is given by

Varg[U;(X)], for0<0<4,
Vare(Uy(X)] — 8r%/360, for 6 > 8, + 2r .

It is note that U(X) in (4.2) has minimum variance among all unbiased esti-
mator of 8 € ©~.

Varg[U(X)] = {
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