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ABSTRACT

This paper is concerned with the asymptotic properties of the least
absolute deviation estimators for nonlinear regression models. The sim-
ple and practical sufficient conditions for the strong consistency and
the asymptotic normality of the least absolute deviation estimators are
given. It is confirmed that the extension of these properties to wide class
of regression functions can be established by imposing some condition
on the input values. A confidence region based on the least absolute
deviation estimators is proposed and some desirable asymptotic prop-
erties including the asymptotic relative efficiency are also discussed for
various error distributions. Some examples are given to illustrate the
application of main results.
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1. INTRODUCTION

The least squares method plays an important role in the statistical inference
of regression parameters, both for linear models and for nonlinear models.
However, in the spite of the theoretical and practical merits, basic criticisms
of procedures based on the least squares method in the past have pointed to
the lack of the robustness even from a single outlier or from a slight departure
from the normality assumption on the errors ; General discussions of robustness
are given in Huber (1972) and Hampel (1973). To overcome this difficulty an
alternative procedure based on the least absolute deviations using the L;-norm
rather than the least squares using the Ly-norm may be preferred.

In this paper we confine our attention to the nonlinear L;-normed estima-
tion by establishing the asymptotic properties of the least absolute deviation
estimator under mild conditions, and confirm that the least absolute deviation
estimator is a natural analog of the sample median for the nonlinear regression
model.

We consider the following nonlinear regression model for a univariate re-
sponse ¥,

Yt =f((l?t,00)+€t, t = 1,...,n, (11)

where r, € R™ denotes the tth fixed known input vector, 8, € RP is the
parameter vector from a parameter space © C R, f: Rt™ — R' is a
function of z and 8, and ¢, are random errors.

The parameter §, is unknown and the regression problem is to make in-
ference about 0 in some optimal way on the basis of observations on y;, and
z;,t = 1,...,n. The least squares estimator (LSE) 6, is any vector in © which
minimizes the mean square deviation

Sul0:0) = = 3(ue — S(en O,

where y = (Y1, .-, Yn). Alternatively, the least absolute deviation estimator
(LAD) 8, is defined by any vector minimizing the mean absolute deviation

Du(y0) = + 3l = f(an0)l- (12
t=1
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The LSE or LAD is a particular case with p(z) = 22 or p(x) |w| of a gen-
eral class of robust methods based on minimizing an expression + ~ i1 Py
f(z¢,8)) for a suitable choice of the p function.

Various authors have provided conditions which ensure the existence, con-
sistency, and asymptotic normality of the nonlinear LSE and LAD. Jennrich
(1969) and Malinvaud (1970) proved strong consistency and asymptotic nor-
mality of LSE when the parameter space is a compact subset of RP and the
errors, € are independent and identically distributed (i.i.d.) random variables.
Oberhofer (1982) gave weak consistency result of LAD when the parameter
space is a compact subset of R? and the errors are independent random vari-
ables. Richardson and Bhattacharyya (1987), in a recent paper, extends the
strong consistency of LAD to any separable, completely regular topological
parameter space. Asymptotic normality of LAD for the nonlinear model has
received almost no attention in the statistical literature. Jennrich (1969) also
showed that for the LSE, v/n(6, — 0,) is asymptotically normally distributed

with mean zero and variance 02Q~! where Q = lim —J(8)'J(6) where J(6) is
n—oo n,
the usual n x p Jacobian matrix of the f(z;,8).
Bassett and Koenker (1978) and Nyquist (1983) showed that under some

regularity conditions for the linear LAD 6,, asymptotically /n (0 —-4,) ~
N(O0, w2Qo ') where the moment ratio parameter w = 1/2¢(0) and Q, =

lim —X'X which is positive definite with rank(Q,)=p. Here, g(0) is the ordi-

n—oc
nate of the error density function at median 0.

The results of Jennrich and Nyquist led Gonin and Money (1985) to con-
jecture that the nonlinear LAD including L,-norm estimator, \/_(0 —-40,) is
asymptotically normally distributed with mean zero and variance w2Q~! where
w, depends on p. However, so far nobody has proved rigorously thls result of
the nonlinear LAD, which is the principal result of this paper.

The main purpose of this paper is to provide simple sufficient conditions for
the asymptotic normality of the LAD in the nonlinear regression model (1.1),
and to confirm that the asymptotic efficiency of the LAD are, in general,
superior to these of the LSE. For these, under mild regularity conditions the
asymptotic normality of the LAD is proved in Theorem 3.1 of Section 3. A
confidence region based on the LAD is proposed and some desired asymptotic
properties including the asymptotic relative efficiency are also discussed in
Section 4. Some examples of the application of the main results are contained
in sections.
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2. STRONG CONSISTENCY

We start this section by introducing some conditions on regression function
and input values which ensure existence and strong consistency of LAD 0,

Throughout the paper we make the following assumptions on the model
(1.1) : Assumption A. ‘

Al: 8, is an interior point of a convex and compact set © C RP.

A2: The function f(z,8) is continuous in (z,8).

Under Assumption A, Its existence and measurability are then immediate
result of Lemma 2 of Jennrich (1969).

In addition to Assumption A, we will assume Assumption B :

B1: {¢} are i.i.d. random variables with the continuous distributon func-
tion G for which G(0) = 1/2 uniquely.

B2: The sequence of inputs {z;} generates Cesaro summable sequences
with respect to a probability measure p defined on the Borel subsets of =, where
= is a subset of {z € R™ : |f(z,0) — f(z,8,)| > c for some ¢ > 0,0 # 0, in O},

i.e., for every real valued continuous function & with [z |h(z)|dp(z) < oo,

lim lz_:h(:ct) =/Eh(:c)d;t(:r).

Remark 1. Assumption B2 is the regularity condition on the limiting
behavior of inputs for the weak convergence of measures. One simple way of
generating such sequence is to choose inputs as a random sample from some
distribution function H(z) defined on = by the Strong Law of Large Numbers
(SLLN).

Now, we shall state the strong consistency of LAD.

Theorem 2.1. For the model (1.1), suppose that Assumptions A and B
are fulfilled. Then the LAD 8, defined on (1.2) is strongly consistent for 6,.

Proof. The proof follows in the similar manner as the proof of Theorem
of Oberhofer (1982), so that we shall be brief in here. Since © is compact, it
suffices to show that for any § > 0, ligglf o i?fp&(Dn(y, 0)—D,(y,0,)) > 0al-

most surely (a.s.), due to D, (y,0,)— D,(y,0) <0 for every 6 € ©. Let dy(6) =

f(24,0) — f(x+,0,). Note that Dn(y,0) — Du(y,00) = 1 Tica{le: +de(0)] = les]}-
Let X; = |e; + d:(0)| — |&]. Then {X,} is a sequence of independent random
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variables with uniformly bounded variances due to the boundedness of f, so
that by the SLLN we have (S, — ES,) — 0 a.s., where S, = Y™, X,. There-
fore, it sufficies to show that

C e ES
liminf inf — >7n a.s.,
n—oo [9-f.I>6 n

for some real 7 > 0. Let T} = {¢t|d,(0) < 0} and T, = {t|d;(§) > 0}, with the
number of elements n; and n, respectively. Then %ESn becomes

/0 —d(8)] {|d(9)] = 2}dG(e +—Z/[d,(0 {ldt 0)| + 2}dG(z). (2.1)

nl teTy ny teT?

From the fact that z < —42—1 on (0,——%—1] and > ——‘,_,(—l on [—42—2,0), the
(2.1) is greater than or equal to

5 o agey | HONG +-—Z/Ju 4(6)]dG(z)

nl teT) ny teT,

Thus, in virtue of B2, we obtain
1 h &
l > -
nES" 2~ ;_1 |d,(9)

where h = minterluTz{lG(—M) — G(0)[}. Then

himinf inf
n— |§-6,]>6 n

> b [[|f(2,6) = f(z,00)ldu > .

Therefore the proof is complete.

Remark 2. Theorem 2.1 still holds when Y"1, |f(z:,0) — f(z¢,0,)| di-
verges to infinity at rate faster than n, provided that for every 8 # 0, in ©,
|f(z,8) — f(z,6,)| > c on Z for some ¢ > 0. This result suggests that {z,}],
should be chosen such that Y7, |f(z:,8) — f(z:,0,)| as large as possible. In
this point of view, although the choice of B2 for input values {z,} may not be
optimal, it does guarantee that minimum information is gathered to allow for
the strong consistency of LAD.

Remark 3. The result of Theorem 2.1 may be extends to the more general
parameter space which is noncompact but separable and completely reqular
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using same technical procedure used in Richardson and Bhattacharyya (1987).

For the applications of Theorem 2.1, we now consider several regression
functions. Throughout the example we assume that the input values {z:}
which give rise to observations yi,¥2,...,yn are chosen as a realization of a
random sample from the distribution function F(z) defined on = C R™.

Example 2.1. Consider the exponential model y; = f(z;,0,)+¢€;, with the
regression function f(z,0) = e, where {€} is a sequence of i.i.d. random
variables with the distribution function G for which G(0) = 1/2. Suppose
that = is a subset of [T,00), T > 0 and © = [0,a] C R', where @ > 0.
Evidently, the regression function satisfies the assumptions of Theorem 2.1.
We can guarantee, therefore, the strong consistency of the LAD 0, under the

sampling scheme on =.

Example 2.2. Consider the model y; = f(z,,0,) + €, where §, € O =
[0,4] x [0, 3}, a1, @3 < 00 and f(z,0) = 61e7%%, § = (0,,0;) € ©. Assume
that {¢;} are i.i.d. random variables each having median zero. The assump-
tions of Theorem 2.1 are easily satisfied. Note that 8,¢~%% = #/¢=% if and
only if ; = 0, and 6, = 6),. Let = C {z : |f(z,0) — f(z,0')] > c,0 # 0" € © for
some ¢ > 0}. Then under the sampling scheme on =, the LAD 9, is strongly
consistent.

The above result for the consistency is still applicable in the liner model.

Example 2.3. Consider the multiple regression

m
Yy = Zﬂuxm—l—et, t=1,...,n (2.3)
u=1
where the ¢, are random errors, 3, (v = 1,...,m) are unknown parameters, and
y; are observed response corresponding to the design vector z; = (z4, ..., Ttm ).
In this case, the assumptions of Theorem 2.1 are straightforward and if the
input vector {z,} are chosen as a realization of a random sample from a uniform
(say) m—variate distribution whose support is a subset of = = {x € R™ : each
component > ¢ > 0} then the strong consistency of LAD follows.
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3. ASYMPTOTIC NORMALITY

In this section we seek conditions on regression function and input values
which ensure the asymptotic distribution of nonlinear LAD d,.
The following notation is used: f,(8) = f(z,,9), fi(0) = (39, f:(0));

and f/'(6) = [aa 3(;,‘ft(0)]1k 1,
We will require the followmg additional Assumption C :
C1: ft’(0) and f]'(6) exist for all § near 6,.
C2: 257, f1(8,)f1(6,)T converges to a positive definite matrix V(8,) as

n — 0o whele T denotes transpose.
The following theorem provides conditions for the asymptotic normality of

LAD.

=1,..4p

Theorem 3.1. Let 6, be a strongly consistent LAD of 6, under the model
(1.1). Then under Assumption A, B and C, \/n(6, — 6,) converges in dis-
tribution to a p-variate normal random vector with mean zero and variance-
covariance matrix V(8,)7'/[2¢(0)]%.

Proof. Let be D,(8) = D,(y,8) simply and let p,(z) be a smooth func-
tion such that as n — oo, p,(z) — |z| and |D,(8) — D,(6)] converges to zero
a.s. unifomly in  where D, (8) = 2y v Pal(ye— f:(0)). As such function we use

1+ (ﬂnx)2
pu(z) = 23, I[|.1:|<—] (z) + |5’7|1[|x|> ( ),
where (3, is a function of n which is of the same order as n, and IE is an
1nd1cator function on E, then clearly p,(z) — |z| and n|D, () — D,(9)| <

Ti=1 3, IHT‘((; <] = 0 a.s. uniformly in by the Kolmogorov’s SLLN, where

r(0) = Yyt — ft( ) . .

Let 8, be a minimizer of D, (6). Note that \/n(d, — 6,) = vn(6, —6,) +
V(8. —8,). The theorem will be proved if we show that

@ ) \/_(9 — 0,,) converges to zero in probability.

(ii). /n(0, — 6,) converges to the p-variate normal distribution with zero
vector mean, and variance-covariance matrix V'(6,)~!/[2¢(0)]2.

For (i), note that from the Taylor formula, there exists an 7, € [0,1] such
that

~ ~

Du(8.) = Du(B,) = D(8)(0n — B,) + L0, = 8,7 D30, — 0,)
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where 8, = (1 —n,) é + 9,0, which is measurable. Since 6, is in the interior

of © eventually, D, (5 )y=0. ertmg X, for the smallest eigenvalue of D(8,,),
we obtain

~

~ ~ -~ n -~
n(0n = 8,)7 (0, = 0n) < X—lD (02) = Da(62)]
which converges to zero as n — oo. This result follows, because

from the facts that n|D,(8) — D,(8)] — 0 a.s. uniformly in 8, both 9, and 6,

are strongly consistent, and /\ — /\ which the smallest but postive eigenvalue

of 2¢(0)V(8,) because of D"(6,) — 29(0)V(6,) which will be proved in the part

(ii). In this case, the strong consistency of 8, is due to D, (8) — D.(0) — 0 as.

uniformly in 8. It follows that /n (6, — 0,,) converges in probability to zero.
To prove (ii), note that the first two derivatives of D..(0) are

1
‘Dl 0) Eft IEtn_;l'th SZgTL ri ))IE?"’

and

t=1
> f(0)Sign(r(0)) Ik,

t=1

3|»—i

DZ(H) = Z IEtn
+%zft<0 )£160) Iz, (32)
t=1

where E, , = [|[r:(0)| £ ﬂ%‘] From the mean value theorem and D/(f,) = 0, we
have

D'.(8,) = D2(6;)(6, — 6,)

for some 67, on the line segment with end points 0, and 6,.. Thus, \/ﬁ(én —-4,)
becomes

(D20 { e 3 1100, 4 72 3 SO S0 ey, (33

where E; , = [|&:] < ] First of all, it can be shown that D”(62) — 2¢(0)V(8,)
because when 0 = 4, the first and second terms of the right-hand side of (3.2)
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converge to zero matrices pointwisely and in probability respectively, while the
third term converges to 2¢(0)V (6,) under the assumption C. The latter result
follows from the fact that under § = 4, 2~ =S FO) F(0) I, . — 2g(0)V(6,)
in probability due to E[3,Ig, ] — 2¢(0), Var[]E,’n] < PE;, — 0 for all t, and
Assumption C2.

Since the first term in curly brackets in (3.3) converges to zero in law, it
therefore suffices to show that the second term, denoted by W, converges to
normal random vector with zero vector mean and variance-covariance matrix
V(8,).

For this we first note that for any nonzero constant vector A = (A, ..., ApY,
XMW, =371, Z{°) where

\/_Z/\ 6f5;" )i ign(ry(6.)) g

Then, since Z\° °) are independent, it remains to show that the Llndeberg con-
dition of the central limit theorem holds with EZto) =0 and ¢? = Vath(o)
equal to

[ZA o mt’ )] P[ES,). (3.4)

‘U.

Now, for arbitrary ¢ > 0,

Z/MM] Z[ZA l x*’ )] P[E;, 0 D,]

where s2 = Y, 02, Fy(2) is the distribution function of Z{” and

Z A 0f(z1,0 )IE'c,n(w)’ > esn].

Din [ 00,

u—l

Thus,
Z/ 22dFy(z) < max P[Dyn|E;,)

n t=1 7 lz]>esn]

which converges to zero. This result follows from the fact that

(32 0 2L 3o, o) 35)

u=1
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and Dy, = [w|lg: (w) > €6,] with

S ESWHIAVALRG R
= = PIE;,)
AT (L1100 2(6,)7 |
which converges to infinity as n go to infinity, from C'1 and the boundedness
of f. Thus the Lindeberg condition holds.

Furthermore, obviously E[MNW,] converges to zero, and Var[NW,] = s2
= Y, o2 converges, by (3.4) and (3.5), to A'V/(8,)A as n — oo, so that W, con-
verges to normal distribution with zero mean vector and variance-covariance
vector V(8,). Hence, the desired limiting distribution of vn( 0, — 6,) is ob-
tained. This completes the proof.

The strongly consistenct estimators of Example 2.1 and 2.2 are also asymp-

tocally normal since Assumption C is easily satisfied for each case.

In the linear model, Assumption A, B and C1 of C are straightforward.
Also, Assumption C2 of C reduces to the condition that there exists a positive
definite matrix ¥ such that as n — oo

lyx o, (3.6)
n

where X is the design matrix of the model (2.3). Moreover, the condition (3.6)
is implied by B2:

1 1
~“X'X = [—mexw] - Y= [/ xu:cvdu(x)] .
n n t=1 u,v=1,...,p E u,v=1,...,p

In this case, the matrix £* is positive definite since for any nonzero A =
(A1, .oy Ap) in RP, NE*X = [ N[z*z*|Adpu(z) > 0 if X is of full rank, where
z* = (1, ...,2,)". Note [ Drygas (1976) ] that the (3.6) is a sufficient condition
for the strong consistency of the LSE.

4. CONFIDENCE REGION AND ASYMPTOTIC
RELATIVE EFFICIENCY

In this section we shall provide approximate confidence region for the pa-
rameter @ in the model (1.1), based on the large-sample normality of the LAD,
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and consider the asymptotic relative efficiency of the proposed region relative
to the classical result derived from the limiting distribution of the LSE, using
the ARE of two estimators.

The asymptotic normality of \/ﬁ(én —8,), derived in Theorem 3.1, under
the regularity conditions, suggests the use of the pivotal quantity of the form

Qn(y,0) = (0, — 0)V,(6,)(0, — 6)

[29(0)]2

where V,,(0) is the p x p matrix with (u,v)th element L FHO) )T,
The following theorem gives the large sample distribution of Q.(6).

Theorem 4.1. Under the conditions of Theorem 3.1, @.(0) has asymp-
totically a chi-square distribution with p degree of freedom.

Proof. Theorem 4.1 follows immediately from Theorem 3.1.

By reference to the limiting distribution of Q,(y,6,), we define Ci—a(0) as
the set of § such that

(6 — 0)Vo(6,)(6, —8) < 6
where 6 is 29: 2Xf-a(P) and x3_,(p) is the (1 — a)th the quantile of the chi-
square distribution. Then, for n large C1_,(6) provides a 100(1 — a) percent
confidence region for 6.

Note that it is known [e.g., Jennrich (1976)] that under certain regularity
conditions, the sequence of the LSE’s 6, has asymptotically a normal distri-
bution in the sense that

V(b — 8,) L N,(0,02V(6,))
where o is the common variance of errors in the model (1.1).
Thus, a 100(1 — «) percent confidence region based on the LSE, denoted
by C;_,(8), is the set of 8 such that
(00 — )V, (8,)(6, — 6) < &

where § is %},\/f_a(p) if 02 is known and ps®Fi_.(p,v) if o2 is estimated inde-
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pendently using v degrees of freedom. 5

If we define the asymptotic relative efficiency of {,} with respect to the
classical least squares estimator {f,} on the inverse ratio of their generalized
limiting variances, and denote it by e(A,S), which implies strictly smaller
asymptotic confidence region, then we have

0_2

~ 290

which coincides with the ratio of the variances of sample median and mean
from the error distribution G(z).

The above result implies that the LAD is relatively more efficient than LSE
in the nonlinear model for any error distibution for which sample median is
more efficient than the sample mean as an estimator of location, i.e., the heavy-
tailed distributions and/or the distributions which have peaked density at the
median, such as Cauchy, double-exponential, logistic distribution etc. This
result also implies that the LAD has the strictly smaller asymptotic confidence
regions than in LSE.

e(4,5)
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