141

Journal of the Korean
Statistical Society
Vol. 24, No. 1, 1995

A Diffusion Model for a System
Subject to Random Shocks f

Eui Yong Lee !, Mun Sup Song ! and Byung-Gu Park ?

ABSTRACT

A diffusion model for a system subject to random shocks is intro-
duced. It is assumed that the state of system is modeled by a Brownian
motion with negative drift and an absorbing barrier at the origin. It is
also assumed that the shocks coming to the system according to a Pois-
son process decrease the state of the system by a random amount. It is
further assumed that a repairman arrives according to another Poisson
process and repairs or replaces the system if the system, when he ar-
rives, is in state zero. A forward differential equation is obtained for the
distribution function of X(t), the state of the system at time t, some
boundary conditions are discussed, and several interesting characteris-
tics are derived, such as the first passage time to state zero, F(0,1), the
probability of the system being in state zero at time ¢, and F(0), the
limit of F(0,t) as t tends to infinity.
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1. INTRODUCTION

Baxter and Lee (1987) introduced a diffusion model for a system subject to
continuous wear. The state of the system was modeled by a Brownian motion
with negative drift and an absorbing barrier at the origin. Recently, Lee and
Lee (1993) introduced a pure jump model for a system subject to random
shocks coming to the system according to a Poisson process. In this paper, we
generalize the previous two analyses by introducing a mixed model for a system
whose state changes both continuously and jumpwise with time. It is assumed
that the state of the system is initially 3 > 0 and thereafter follows a Brownian
motion with negative drift and an absorbing barrier at the origin, unless a
shock arrives at the system. We assume that the shocks come to the system
according to a Poisson process of rate v > 0 and, instantaneously, decreases
the state of the system by a random amount Z with distribution function /.
If the amount of a shock is larger than the current state of the system, it is
assumed that the state of the system becomes zero after the shock, that is, the
state zero is considered as the complete breakdown of the system. It is further
assumed that the system is repaired or replaced by a repairman who arrives
according to another Poisson process of rate A > 0; when he arrives, if the
system is in positive states, no action is taken, otherwise, he instantaneously
increases the state of the system up to 8. Let X(t) denote the state of the
system at time ¢ and let F(z,t) = P{X(t) < z} be the distribution function
of X(t). In section 2, we derive a forward differential equation for F(z,t) of
Kolmogorov’s type and discuss some boundary conditions. By making use of
the martingale argument, in section 3, we obtain the Laplace transform of the
distribution function of the first passage time to state zero, and use this result
and the renewal argument to derive an expression for F(0,t) = P{X(t) = 0}
in section 4. An explicit formula for F(0) = lim,_ £%(0,t) is also calculated
by applying the key renewal theorem.

2. FORWARD DIFFERENTIAL EQUTATION
FOR F(z,1)

If A(8t) = A(t + 6t) — A(t), where {A(t),t > 0} is an ordinary Brownian
motion with parameters ¢ < 0 and o? > 0, then one of the following four
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mutually exclusive events will occur during the small interval (t,t + 6t):
(a) Neither the repairman nor the shock comes, then

X(t) + A(8t), almost surely if X(t) + A(6t) > 0,

X(t+6t) = { 0, almost surely if X (¢) + A(6t) < 0.

(b) The repairman does not come but the shock comes, then

X(t)+ A(ét) — Z, almost surely if X (t) + A(dt)y - Z > 0,

X(t+6t) = { 0, almost surely if X(¢) + A(6t) — Z < 0,

(c) The repairman comes but does nothing since X(t) > 0, and the shock does
not come, then

X(t+6t) = X(t) + A(ét) and X (¢) > 0, almost surely.

(d) The repairman comes and repairs the system since X (¢) = 0, and the shock
does not come, then

X(t+0t) = 8+ A(6t) and X(t) = 0, almost surely.

Notice that the probability of the event that both the repairman and the
shock come during the interval (¢, + 6t) is o(ét). Thus, for z > 0,

Flz,t+6t) = (1-v6t)(1 - At)P{X(t) + A(6t) < z}
+ véi(1 — A6t)P{X(t) + A(6t) - Z < z}
+ (1= vst)AStP{X(t) + A(6t) < z, X(t) > 0}
+ (1 —vét)AStP{B + A(6t) < z, X(t) =0} + o(é6t).

Now,

PIXW)+A@) <2} = [~ P(e~y,1dP{A®SY) < y)

F(z,t) — E[A(ét)]%F(ac,t)
82

507 F(z,t) + o(6t),

+ SEHAG))]
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on performing a Taylor series expansion, assuming that & F(z,t) and %F(m, t)
exist. Substituting this expression into the above formula for F(z,t + 6t), re-
arranging and letting §¢ — 0, we obtain the following forward differential
equation for F(z,t):

jo 6I,F(:t: )= p&F(z,t)+v [y F(z+y,)dH(1)

9 _ —VF(z t) — AF(0,1), forz <8, .
6tF(z’t)— 2a' a:?F(x t)—;laF(:L't +1/f0 F(z 4+ y,t)dH(t) (2.1)
—-vF(z,t), for z > 3.

Since the origin is an absorbing state, we can prove by using an argu-
ment similar to that of Cox and Miller (1965, p. 219-220) that f(0,t) =
2 > F(2,t)|z=0 = 0, for all ¢ > 0, which is a boundary condition. In section
4, we derive an expression for F(0,t), for all t > 0 by a purely probabilistic
argument and this result will serve as another boundary condition.

3. THE FIRST PASSAGE TIME TO ZERO

Notice that until the state of the system reaches zero, X (t) can be expressed
as

where {B(t),t > 0} is a Brownian motion starting at 3 with parameters p < 0
and 02 > 0, and {C(t),t > 0}, C(t) = 7N 7. is a compound Poisson process
with {N(t),t > 0} being a Poisson process of rate v and Z;’s are i.i.d. random
variables having the distribution function H.

For the convenience of the calculation, let {B’ (t) t > 0} be a Brownian
motion starting at 0 with parameters —g > 0 and o2 > 0 and let’s define a
new process

X'(t)y= B'(t)+C(¢).

Then, by symmetry, it can be easily seen that the first passage time of X(¢)
reaching state 0 is equal in distribution to that of X '(t) reaching state 3, say
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Tg:
T — inf{t: X'(t) > B}, if X'(t) > B, for some t > 0,
P71 oo, if X'(t) < B, for all t > 0.

It can be shown that the moment generating function of X'(t) is given by

E[e"XI(t)] = exp{(—up + %uzo'2 — v+ vmy(u))t}, (3.1)
where my(u) = E[e*?], the moment generating function of Z. By noting
that both Brownian motion and compound Poisson process are Markovian
and possess the stationary increments, it can be easily seen that D(t) =
exp{uX'(t) — nt} is a martingale, where n = —uy + sulo? — v 4+ vmp(u).
Since T is a Markov time, an argument similar to that of Karlin and Taylor
(1975, p. 361-362) shows that the Laplace transform of Ty is given by

Ele™8] = 74P, (3.2)
where u is related to 5 by equation

1
n=—uu+ §u202 — v+ vmg(u). (3.3)
For example, in the case that H is an exponential distribution of rate 8, u
is the solution of

%azue’ —(p+ %azﬂ)u2 + (uf —v—n)u+n6 =0. (3.4)

4. FORMULA FOR F(0,t)

Consider the points where the actual repairs occur. Notice that the sequence
of these points forms an embedded renewal process. Let T* be the generic
random variable denoting the time between successive renewals, then we see
that

T 2 T4 + E*, (4.1)

145
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where 2 denotes equality in distribution and E* is an exponential random
variable of rate .

By inverting the Laplace transform of T obtained in the previous section,
it is possible to find the distribution function of T, U say, which of course
depends on what H is. Hence the distribution function of T™, V say, is given

by
v = [ Ut = u)hedu (4.2)

and the renewal function of the embedded renewal process is given by

W(t) = i v (e), (4.3)

where V(® is the n-fold recursive Stieltjes convolution of H.

Now, notice that the state of the system is over zero at time ¢ if and only
if the initial 7} is larger than ¢ or there is a renewal in the embedded renewal
process at u € (0,t] and the succeeding T} is larger than ¢t — u, and hence

t
1 - F0,t)=1-U(t)+ / (1= U(t — u)}dW (u). (4.4)
0
Equation (4.4) implies
t
F(0,¢) = U(%) -/ (1= U(t - w)}dW (). (4.5)
0
By applying the key renewal theorem to the equation (4.5), we obtain
F(0) = tl_l»rg F(0,t)
1 oo
=1 _E’[’F]/o {1 - U(t)}dt

1
T XE[T, + 1

since E[T*] = E[Tg] + + and [5°{1 — U(t)}dt = E[Tj], where E[T}s] can be
calculated by differentiating the Laplace transform of T given in Section 3.

(4.6)
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