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ABSTRACT

The goal of this article is to study the performances of various empir-
ical Bayes simultaneous interval estimates for all pairwise comparisons.
The considered empirical Bayes interval estimates are those based on
unbiased estimate, a hierarchical Bayes estimate and a constrained hi-
erarchical Bayes estimate. Simulation results for small sample cases are
given and an illustrative example is also provided.
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1. INTRODUCTION

When experimenters compare several treatments, their main goal is often
not to decide whether the treatments are all equal or not. In such situations,
the so-called multiple comparisons procedures are known to be useful statistical
tools to detect the real differences between the treatments.

For the purpose of all pairwise comparisons, Tukey’s(1953) simultaneous
confidence intervals are the best known, and can often be found in many statis-
tical package programs. Some optimal properties of Tukey’s have been studied
by Gabriel(1970), Genizi and Hochberg(1978), and Kunte and Rattihalli(1984)
among many others. Further detailed references including modifications and
extensions of Tukey’s can be found in excellent monographs by Miller(1981),
and Hochberg and Tamhane(1987). '

Bayesian decision theoretic approach has been taken by Duncan(1961,
1965), Waller and Duncan(1969,1972), and Dixon and Duncan(1975). In these
Bayesian decision theoretic studies, they have assumed an additive loss under
which the simultaneous comparison problem can be resolved into several pair-
wise comparison problems. Recognizing such a discomforting aspect, they have
suggested some methods by which the assumed loss structure can be related
to the level of homogeneity hypotheses testing. This approach, however, loses
the flavor of simultaneous comparison.

A Bayesian approach without losing the flavor of simultaneous comparison
is certainly to control the posterior simultaneous coverage probability. Such
an approach has been noted in the literature (see, for example, Hochberg and
Tamhane(1987)). Kim and Hwang(1991) have adopted such an approach, and
have studied empirical Bayes simultaneous confidence intervals in which the
prior parameters are estimated from the data. Their main goal is to study the
asymptotic coverage probabilities of the proposed procedure.

This article treats the empirical Bayes simultaneous interval estimates for
all pairwise comparisons. The considered empirical Bayes interval estimates
are those based on unbiased estimate, a hierarchical Bayes estimate and a
constrained hierarchical Bayes estimate. These are called the UE, the HBE,
and the CHBE interval estimate, respectively. Simulation results for small
sample cases show that the CHBE interval estimates dominate the UE and the
HBE interval estimates. An illustrative example is provided with comparison
of Tukey’s(1953) in Bayesian sense.
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2. EMPIRICAL BAYES SIMULTANEOUS
INTERVAL ESTIMATES

For the purpose of comparing several means, many classification models
can be reduced to the following :

Xi ~ N(0;,02%) independently (i =1,...,k),
(2.1)
rs? ~ o?x*(r) independent of X;'s,
where 02 = 0%/n and s? is an estimate of the unknown variance o2.
It is assumed that, a priori,
0; ~ N(pr,02) independently(i =1,... k) (2.2)

for a presumably specified p, and o2. Further, we assume the following non-
informative prior for the nuisance parameter o2:

m(o?) = 1/o0? (2.3)

It should be pointed out at this point that the joint prior by (2.2) and
(2.3) is not a conjugate prior. As pointed out by many researchers (see, for
example, Berger(1985) p.288), the conjugate prior in this case is unattractive
in the sense that the prior variance of the conjugate prior should be a multiple
of the sample variance o2. The prior (2.2) is believed to be more natural
eventhough the specification of u, and particularly o? would be difficult in
practice.

For the prior (2.2) and (2.3), the posterior distribution of 6;'s, given o?
and data (x, s?), is easily seen to be independent normal. More precisely, given
the data (x,s?),(y,,02%) and o2, 6,'s are independent and

a s?/o? s?/n

a+ sz/(f?p’r t a+ 32/02:“ " a+ s2/o?

0; ~ N( ), (2.4)

where a = s?/(no?).
And the posterior density of
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£ = rs’/a?

, given the data (x,s?) and (ptr,02), is proportional to

Efr e, b atr e &
(a+£/r) eXp{—QaJrf/r}é exp{ 2}* (25)

where b=n Y5 (z; — pr)?/s%
Based on this posterior, one would naturally propose the followings as
Bayesian simultaneous interval estimates :

0,‘ - 0]‘ € E1(0,~ - 03) + q\/Varl(Oi - 0]) (Z # ]) (26)

with E, and Var, denoting the posterior mean and variance, respectively,
given (x,s?) and (gr,0?) and some quantile g¢.

Besides the accurate specification of (pr,02), it is extremely diffcult to
compute the simultaneous coverage probability of (2.6) for such 6's with
general correlation structure. In fact, it follows from (2.4) and (2.5) that the
posterior moments are given by

Ei(6:) = B(Z5)(xi = pe) + fims

2

Vary(6;) = Var(;3%77)(zi — pr)? + E(a+16/7)’;, (2.7)

Covy(6;,6;) = Var(z5%7;)(ei — wa)(z; — #e) (1 #7):

Therefore it is natural to search for an approximation of (2.7) in mean-
ingful cases. We regard the case of large sample information relative to prior
information o2 as meaningful one. This corresponds to the approximation
of (2.7) as 02 — oo, ie., a=s*/(no}) = 0.

Such an approximation can be done by noting that the posterior density
7(€|a) in (2.5) is uniformly approximated by the chi-square density with r

degrees of freedom, i.e.,

(€la) = ¢i7le${1 + O(a)},

1
()22
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as a — 0. Therefore (2.7) can be approximated as follows :
Ei(0: - 6;) = E(537)(zi — ),

Var,(6; — 0;) = 2E (a+1£/r )s?/n + O(a?), (2.8)

Covy(0; —0;) = O(a®) (i # ).

Thus, keeping terms up to the order of O(a), we find that the interval
estimates (2.6) can be approximated by

Ei(0; - 0;) = E(35:)(z: — 1;),

W0 = O R 4

where Qiar) denotes the upper a quantile of the Studentized range distribu-
tion with parameter k and r degrees of freedom. Hence approximate Bayesian
simultaneous interval estimates for 8; — 8; ( # j) are given as follows : For

all ¢ # 7,

0 =0, € Bl = 1) £ Q0 /B () =

At this point it should be remarked that (2.9) is a refinement of the Bayesian
solution

(2.9)

0:—0; € zi—z; £ Q) s/Vn (i #))
with respect to the improper prior 02 = oo, which is formally the same
as Tukey’s(1953). Even with the approximation (2.9), one needs to specify
(#r,0%) to implement it. The explicit dependence of (2.9) on (gx,02) can be
expressed as follows : With o2 = o%/n,

o2
(£+ar) = E(a—r_‘_‘;;lx,sz,p,r,a'ﬁ),
. (2.10)
E(Er;azr £ = 1= 'zE(”,M2 | %, 82, pr, 02).
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The accurate specification of (pr,02) being difficult, one needs to estimate
(ttr,02) based on X;'s and s?. Kim and Hwang(1991), in a little bit different
setting, used an idea of plugging in unbiased estimates of 02 + o2 and o2
from the marginals of X,’s and s* which are independent N(ur,02%+02) and
a?x*(r)/r. Such an idea results in the following estimate of (2.9) :

r—2

. o R s
0,'—93' € (1 —-BUE)(SC,'—J:J'):}:QLT)\/ (1 _BUE) ﬁ’
where )
Byg = estimate of 02(02 + 02)7!
k

= min{L, (n (i - 2)/((k— 1))},

=1

Modifying such an estimate, the interval estimates become

0:—0; € (1-Bup)ai—x;) Q1 - Bugs/Vn(i#j),  (211)

which will be called unbiased estimation(UE) method simultaneous interval
estimates.

Smoother estimate of prior parameters can be obtained by the so-called hi-
erarchical Bayes method, which considers the second stage prior for o2. Note
that, marginally, X;’s are independent and

Xi ~ N(ps,(o7]on + 1)ay),

and that u, and (02/a%+1)'/2 are the location and scale parameters, respec-
tively, eventhough the scale parameter (02/0? 4+ 1)1/2 has a restricted range
(62/0% 4 1)1/ > 1. Thus it seems natural to consider the invariant second
stage prior

w(ury0?) = (a2/o%+ 1) 07 (2.12)

given o2 = o?/n. But, because of the restricted range, the estimation problem
of (2.10) can not be treated as an equivariant estimation. Thus we simply take
the posterior means given the data (x,s?) = (z,,...,z, s?), e,

3

BHB = E(;ﬁ;{lx,sz)
A o202
CHB = L%E(;ﬁ;}ﬂx,s?).
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The resulting simultaneous interval estimates are given by

0~ 0; € (1 - Bup)(zi — ;) £ Q) \/Cup s/Vn (i #j), (2.13)

which will be referred as hierarchical Bayes estimation(HBE) method simulta-
neous interval estimates.

Before presenting the explicit form of posterior means, it should be men-
tioned that similar idea has been used in many empirical or robust Bayesian

167

study. Box and Tiao(1973), Morris(1983), Berger(1985), Berger and Deely(1988),

and Berger and Fong(1989), among many others, can be cited for the sunllal
idea. Morris(1983) and Berger(1985) have used a flat prior =(gy,o o) =

in point estimation when & > 4. But such a flat prior results in improper
posterior for k& < 3.

The explicit forms of BHB and C'HB can be found from the posterior distri-
bution of (p,,02,02), given the data (x,s?), which can be described as follows

px ~ N(Z,(07 +02)/k), given (02,07),

mrrn

¥ = (e = 202 4 o) 4 (st ot ~ X2k 47— 1),

= fo02(02 +02)"' ~ truncated Fle_1),

where x? and Fi, are independent, and f, denotes the usual F statistic for
the homogeneity test, i.e.,

k
e (k1))
Representing o2(o? +U§) ~! and 0202(02 +02)7! by x? and F,,, we have

oXoi+a2) = fUR,,

0202(03r + 03)'1 = (rs2/n)(1 — fo'1 Fo)(1 + k-1

Fcr)/x2

Thus simple but tedious calculations with the density of F distribution lead
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to the following :

Bup = 517 Fopre—2(52550 o) [ Froa o (£o),
(2.14)

Cup = {Frc1r-2(F22f,) — 25 7 Frprrma (251 £ Y Frorr (o),

which can be easily calculated with routine statistical packages.

The HBE interval estimates (2.13) have been devised by considering the
first order approximation with respect to o;? of the Bayesian interval esti-
mates (2.6). It should be, however, mentioned that the same type interval
estimates can be derived from Berger’s(1985, p.565) argument. Berger’s idea
is to replace the posterior of 6,'s, given (x,s?) and o?, by the independent
normal distribution with estimated mean

Bugz + (1 — Bup)a:
and estimated variance
E((o;” + 0777 |x,8%)0%/(rs®/(r + 2)).
With such an idea, the resulting interval estimates become

r+2 . 3
CHB
f_

which are the same as (2.13) except the constant term. \/7' +2)/(r—2
In fact, the HBE interval estimates use the estimates

0; — 9, € (1 - Bup)(z ~—$J)iQ(“’

0, = T+ (zi—3)(1—Bup) (i=1,....k) (2.15)

=1

to locate the center (z; — z;)(1 — B’HB) of the interval for 6; — 6;. With
e(f,) = f, Bup/(k — 3) for k > 3, the estimate (2.15) can be written as

0; = 5?+(1—C(fo)£7_—3

with ¢(f,) having the following expression :

)(IB,' - 1_")3 (216)
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_LLfo ( +Lk__1)_&t) =L 1
o 1 (1 Bl 5

Zk—iS_r [ k—l{/t ”f"(l‘t)rz

C(fo) =

which implies that 0 < ¢(f,) < 2 and c(f,) is non-decreasing in f, for
k > 4. It is well known (see, for example, Lehmann(1983), p.303-307) that
the estimate (2.16) with such a ¢(f,) dominates the usual estimate z; of ;.
Thus the HBE interval estimates use minimax shrinkage estimates of 8; as the
center.

Finally, we consider the interval estimates using other point estimates of
fis in (2.6). Louis(1984) proposed new estimators so that the sample mean
and variance of the estimates match the conditional expectation and variance
for parameters. Ghosh(1992) generalized this idea and called the estimates the
constrained Bayes estimates, which minimize

k A
E(Y(6: - 6:)l]

within the class of 6 = (6,... ,ék) that satisfy

{ (6.]2)
E[T5 (0 — 6)z] = 25, (6: — 6)?

where 6, = k7'TF, 0, § = k “isk b and z = (x,...,7%). Denoting
= E(6;]z) and 6B = k-1 =1 0,3, the constrained Bayes est1mate 0SB of
0; in Ghosh(1992) is shown to be

998 = AGP + (1 - A)6B, (2.17)
where A% = 1+ Hy(z)/Hy(z), Hi(z) = £5, Var((6;—0.)%|z) and Hy(z) =

l(oB 08)2
Computing H;(z) and Hy(x) from (2.4), (2.5) and (2.7), we have
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Hy(2) = (k- 1) E(; r|.1)—— + O(a?)

Hy(x) = Th (2 — 2)2E(gi 10)"

Keeping terms up to the order of O(a) and estimating the prior parameters
by the hierarchical Bayes method, the estimate of A? can be shown to be

A

. 1 -T—.CHB
A2 =14 ——1=2 7
B fo(1 - Bup)?

Considering that the variance of the constrained Bayes estimates is A(> 1)
times the one of the Bayes estimates, the resulting simultaneous interval esti-
mates are given by

0;— 0, € App(l — Bug)(z; — z;) £ Qi‘,‘) VAusCups/vn (i #j). (2.18)

which will be referred as constrained hierarchical Bayes estimation(CHBE)
method simultaneous interval estimates.

Following the idea and the axguments in Kim and Hwang(1991 as k —
o, 1/f, and Bug — 02/(0® + 02) a.s. and Cug — o%/(c? + 02) a.s.
Then A% — (0% 4+ 02)/0? a.s. Thus for large k . one may 1ecommand use of

App =1/\1 - Bys .

3. SIMULATION RESULTS AND EXAMPLE

To see the performances of the proposed simultaneous interval estimates,
it is clear that we can not talk about the probability if the average is taken
with respect to the improper prior 1/0? of the nuisance parameter. Hence we
consider the empirical Bayes simultaneous coverage probability for a fixed but
arbitrary o?. In this situation, the setting (2.1) and (2.2) can be represented
as follows :
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0,- = {Bﬂ,r-}-(l—B)w,'}—Vl"'BanZi,
z; = pr+ VB0, W, (3.1)

s = o%x?/r,

where Z;, W;(: = 1,...,k) and x? are, respectively, independent N(0,1),
N(0,1) and x*(r) random variables, and '

B=—""_ (3.2)

Simple but tedious calculations from the representation (3.1) lead to the

following expression for the empirical coverage probability of the procedures
(2.11), (2.13) and (2.18) :

PVT=B(Z:~Z;) € (B~ B)(W,=W,)[VB£QENE Jx2r (i # §)}, (3.3)

where B and C are computed from W;/\/Bx?'s. Thus the true empirical
coverage probability can be computed by Monte Carlo method.

We conducted a Monte Carlo simulation study, because it is not easy to see
the performances of the proposed simultaneous interval estimates due to the
complexity of the probability in (3.3). In our simulation study, the routines
RNNOF and RNGAM in IMSL were employed to generate random samples
from normal and chi-square distributions, respectively. We used 1,000 replica-
tions in obtaining empirical Bayes coverage probabilities for interval estimates
in (3.3). Because the probability in (3.3) is k + 1 dimensional integration,
we evaluated the probability in (3.3) through the method of Monte Carlo in-
tegration using 1,000 random samples. It is well known that Monte Carlo
integration becomes preferable, since numerical integration is rarely optimal
in three or more dimensions.

Figure 1 shows the empirical Bayes coverage probabilities of the UE, the
HBE and the CHBE interval estimates for selected values of k& and r. In
observing Figure 1, it should be noted that smaller B corresponds to larger
sample information relative to the prior information 0% . The CHBE interval
estimates outperform the others for various & and r in viewpoint to keep the
nominal level. The UE and the HBE interval estimates get a little bit better
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as k gets larger. The UE interval estimates are inferior to the others in large
B.

Figure 2 shows the length ratio of the interval estimates relative to the
Tukey’s interval estimates. In comparison of the others, the length ratio for
the UE intervals is very small in large B . This is considered to be due to the
degeneracy of the intervals when Byg=1.

As a real data example, consider the data in Table 1 reported by Dudeck
and Peacock(1981) and cited in Mendenhall, Wackerly and Scheaffer(1989).

Table 1. Rolling distances

Treatement
A B C D E Mean
Block
1 2.600 2.183 2.334 2.164 2.127 | 2.282
2 2.764 2.568 2.506 2.612 2.238 | 2.538
3 3.043 2977 2.533 2.675 2.616 | 2.769
4 3.049 3.028 2.895 2.724 2.697 | 2.879
mean 2864 2.689 2.567 2.544 2.420

Example : An experiment was conducted to evaluate the performance
of several cool season grasses for winter overseeding of golf greens in northern
Florida. One of the variables of interest was the distance that a golf ball would
roll on a green after being rolled down a ramp (used to induce a constant initial
velocity to the ball). Because the distance the ball would roll was influenced
by the slope of the green and the direction in which the grass was mowed, the
experiment was set up in a randomized block design.

Suppose we choose a confidence level 1 — a = 0.95. Then f,,?i?,,s) = 4.508
for treatment. Interval estimates by Tukey’s, the HBE, and the CHBE are
given in Table 2 for treatment. The UE interval estimates are not reported
because of its inferiority in simulation result.

From Table 2, it can be observed that Tukey’s and the CHBE intervals are
sharp, whereas the HBE intervals are conservative. But the interval length of
the HBE and the CHBE is 90.8% and 94.2% of Tukey’s, respectively.

Figure 3 shows the variations of posterior coverage probabilities for each
interval estimates within some interested range of B = (s%/n)/(s?/n + o2).
Note that Tukey’s intervals keep the nominal level in small B, whereas the HBE



intervals keep the nominal level in a little bit large B. The CHBE intervals are

moderate and keep the nominal level in longer range of B than the others.
Finally, it should be remarked that the results in Figure 3 are evaluated in

the case of k(% — pr)?/(s*/n + 0%) = 0. Similar results are obtained in the
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case of k(Z — pr)?/(s*/n + 02) = 4, and thus are not reported.

Table 2 . Interval estimates for treatments

Treatment Interval estimates | containing
means of difference Zero
A Bl 2864 2.689 | -.088 438 | * |
A C | 23864 2.567 .034 560 | l
A DI 23864 2.544 .057 583 | |
A E | 2864 2.420 181 707 | I
Tukey |B C | 2.689 2.567 | -.141 .385 | * |
B DI 2.689 2.544 | -.118 408 | * |
B E | 2689 2.420 .006 532 | l
C D | 2567 2.544 | -.240 .286 | * |
C E | 2567 2420 | -.116 410 | x |
D E | 2544 2420 | -.139 387 | * |
A B | 2.864 2.689 | -.088 389 | * I
A C 1| 2864 2.567 016 493 | |
A DI 2864 2.544 .036 513 | l
A E | 2864 2.420 143 .620 | |
HBE |B C | 2.689 2.567 | -.134 343 | * l
B D | 2689 2.544 | -.114 363 | * |
B E | 2689 2.420 | -.008 469 | * |
C DI 2567 2.544 | -.219 258 | * |
C E | 2567 2420 | -.112 365 | * |
D E | 2544 2420 | -.132 345 | * |
A Bl 2864 2.689 | -.086 409 | * |
A C | 2864 2.567 027 522 | l
A D | 23864 2.544 .048 543 | |
A E | 2864 2.420 163 658 | |
CHBE |B C | 2.689 2.567 | -.135 .360 | * |
B DI 2.689 2544 | -.113 382 | * |
B E | 2.689 2.420 .001 496 | |
C DI 2567 2.544 | -.226 269 | * |
C E | 2567 2420 | -.112 .383 | * |
D E | 2544 2.420 | -.133 362 | * |
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4. CONCLUSIONS

This study has been done under the situation where similar types of prob-
lems are repeated. Different situation, the so-called compound decision prob-
lem, is when one should make a simultaneous inference about the compound
problem based on current observation. Mathematical formulations for both
situations are the same, but the goal and the interpretation of the inferential
procedure should be different as pointed out by Berger(1985,p.96).

In multiple comparison problems, it should be remarked that experimenters
are faced with the case of large sample information relative to prior informa-
tion. In this case, Bayes estimates using posterior means shrink the observed
data too far toward the prior mean, regardless of small prior information. Thus
the expected sample variance of these Bayes estimates becomes only a fraction
of the variance of the prior. The coverage probability of the HBE intervals
using Bayes estimates falls below the nominal level in some interested range
of the prior configuration.

The constrained Bayes estimates adjust the shrinkage parameter so that the
sample mean and variance of the estimates match the conditional expectation
and variance for parameters. The CHBE intervals using the constrained Bayes
estimates resolve the drawback of the HBE intervals by adjusting the center
of the intervals and enlarging the length. This merit of the CHBE intervals
does not become clear as prior information becomes large relative to sample
information, since the HBE intervals having shorter length than the CHBE
performs well. But this case is rarely in multiple comparison, thus it may be
considered to be no problem.
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Figure 1. (b) Empirical Bayes coverage probabilities
nominal coverage = 0.95
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Figure 2. (a) Length ratio relative to Tukey
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Figure 3. Posterior coverage probabilities



