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ABSTRACT

We first consider the random censorship model of survival analysis.
Efron (1981) introduced two equivalent bootstrap methods for censored
data. We propose a new bootstrap scheme, called Method 3, that acts
conditionally on the censoring pattern when making inferences about
aspects of the unknown life-time distribution F. This article contains
(a) a motivation for this refined bootstrap scheme; (b) a proof that the
bootstrapped Kaplan-Meier estimator of F' formed by Method 3 has
the same limiting distribution as the one by Efron’s approach; (c) de-
scription of and report on simulation studies assessing the small-sample
performance of the Method 3; (d) an illustration on some Danish data.
We also consider the model in which the survival times are censored
by death times due to other causes and also by known fixed constants,
and propose an appropriate bootstrap method for that model. This
bootstrap method is a readily modified version of the Method 3.
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1. INTRODUCTION

The goal of this article is to study bootstrapping in simple models of sur-
vival analysis which involve censoring. We begin by studying the random
censorship model, which we now review. Let the random variables X;,..., X,
be nonnegative independent and identically distributed (iid) with distribution
function F and let Y,...,Y, beiid ~ G. We assume that the X’s and the Y’s
are independent. The X’s represent survival times, the Y’s represent censoring
times. We observe T; = min(X,,Y;), & = I(X; < Y}), i = 1,...,n. Clearly
Ty,...,T, areiid ~ H, where 1 — H = (1 — F)(1 - G).

Efron (1981) introduced the following two bootstrap methods for censored
data and showed that they are distributionally the same.

Method 1. Draw an iid sample of pairs (77, 67),..., (T, 6%) from the n pairs
(T1,61),. .., (Tn,6,), in which each pair (T7,6}) takes the values (T3, 6;)
with probability 1/n, j =1,...,n.

Method 2. Generate X ~ F,,, and Y ~ G,, where F, and G, are the
Kaplan-Meier estimators (KME, Kaplan and Meier 1958) of F and G
respectively. Then form (77, 6}), where T = min(X,Y*), 6 = (X <
Y*),i=1,...,n.

Let us now consider bootstrapping more closely. Suppose that we wish to
estimate the variance of Fy,(t). If we knew the Y’s then we would condition
on them by the ancillary principle, since the distribution of the Y’s does not
depend on F. That is, we would want to estimate Var{F,(¢)|Y:,...,Y,}.
Unfortunately, in the random censorship model we do not see all the Y’s.
If §; = 0 we see the exact value of Y;, but if §; = 1 we know only that
Y; > T;. Let us denote this information on the Y’s by C. Then, what we
want to estimate is Var{F,(t)|C}. Efron’s scheme, which is appropriate for
estimating the unconditional variance, can be adapted to provide an estimate

of Var{F,(t)|C}, as follows.

Method 3. Draw X ~ F), and generate Y;* as follows:

o If §; = 0, then we know that Y; = T}, so we take Y;* = T;;

o If §; = 1, then we know that Y; > T;, so we generate Y;* from the
distribution
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Gn(t) — Gn(Tz)

(Note that conditionally on the observations (T1,61)s ..., (T, 6),
Gn(t) is a (sub)distribution function and (1.1) is a conditional
(sub)distribution function of G,(t). It also should be noted that
when é; = 1, G,(T;) < 1 so that the denominator in (1.1) is not 0.)

fort > T;. (1.1)

Now form (77, 67),i = 1,...,n.
In Methods 1 and 2, Ty,...,T> are iid H, with 1 — H.(t) = (1 - F.(t))(1 -
Gn(t)) = (n — k;)/n where k, is the number of T\’s that are less than or
equal to ¢, and é; = 6; if T = T; forz =1,...,n. In Method 3, ..., T
are independent but not identically distributed since the Y.*’s have different
distributions for different 1’s. Thus, Method 1 (2) and Method 3 are different.

In some situations the assumption of the random censorship model where
the censoring times Y),...,Y, are iid may not be appropriate. For example
we may plan a medical study which is scheduled to end ten years from some
starting date. Suppose that there are several possible causes of death and we
are particularly interested in one specific cause. And suppose that all patients
enter the study along the way over a ten year period. When the ;th patient
enters the study, the patient’s censoring time due to the termination of study
will be known and fixed as, say w;. Let C; be the censoring time due to death
from causes other than the one of interest. Then the overall censoring time
would be Y; = min(w;, C;), and Yi,...,Y, are not identically distributed even
if we assume C), ..., C, areiid ~ K. For this setup Bootstrap Method 1 (or 2)
is not logically correct to apply since the censoring times do not have a common
distribution. But Method 3 can be easily extended to meet this situation. Here
we observe (T;,w;,6;),¢ = 1,...,n where w; is a fixed censoring time for the
;th patient, T; = min(X;,C;,w;) and §; = 1 if T} = X; (uncensored), §; = .5 if
T; = C; (censored due to death by other causes), 6; = 0 otherwise (censored
due to the end of study). Let K, be the KME of K, obtained when we consider
Cy’s as survival times and consider X;’s and w;’s as censoring times, 1.e. K, is
the KME based on the data (T:,ni), where ; = 1 if §; = .5 and n; =01f 6 =
0orl.

Method 3’ Fori = 1,...,n draw X7 ~ F, and generate Y;* as follows:
o If 6; # 1, then we know that ¥; = T;, so we take Y;* = T,
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o If §; = 1, then we know that Y; > T;. Since w; is fixed, we only
need to generate C} to get Y", i.e. generate C; from the distribution

K.(t) — K.(T3)
1 — K.(T})

for t > T, » (1.2)

We then take Y;* = min(C}, w;).

Now form (T}, w;,8}) from X7, Y;" and w;. More specifically,
nr = min(X7,Y;7), 6 =1if X7 <Y, 6 =5 if Y < X7 and Y = (7,
and & = 0 if ¥;* < X7 and ;" = w;. Note that the fixed censoring times

w1, .., W, are not resampled.

For the extreme case in which all censoring times are due to the termination
of the study (fixed censorship model), Efron (1981) suggested the following
approach: choose X7,..., X, % F,, and define T = min(X],w;) with &
equaling 1 or 0 as T} equals AT or w;. Our Method 3’ becomes equivalent to
this approach when there is no censoring time due to other causes.

Let us state the general idea of the bootstrap (see Efron and Tibshirani,
1986). We have a random quantity of interest R = (D, P), which is a function
of both the data D and the unknown probability mechanism P that generates
D. We wish to estimate some aspect of the distribution of R. We assume
that we have some way of estimating the probability model P from the data
D, producing P. Once we have P, we can generate D* from P by Monte
Carlo methods, so that we observe R* = n(D~, P). The idea of the bootstrap
is to estimate some aspect of the distribution of R by that of R*. Different
estimates of P lead to different methods of bootstrapping. For example, in the
random censorship model, we may take P = (ﬁ' , é), where F is the estimate
of the life-length distribution and G is the estimate of the censoring time
distribution. For Method 3 and 3’ we have different ways of estimating the
model P. Considering now the asymptotics, suppose that the random quantity
R has a limiting distribution L. If as n — oo the distribution of R* converges
a.s. to L., we shall say that the bootstrap is consistent for R. For the standard
random censorship model Akritas (1986) has established the consistency of the
bootstrap by Method 2 (equivalently Method 1) for R = nl/%(F, — F), using
the theory of martingales for point processes.

In this article we show (Theorems 1 and 2 of Section 3) that for R =
n/2(F, — F), the bootstrap is consistent whether it is carried out via Method
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3 or Method 3'. Whereas these asymptotic results prove that all bootstrap
methods are consistent for R = n'/?(F, — F), they say nothing at all about
the rate of convergence or the finite-sample performance of the various boot-
strap methods. In Section 2 simulation studies are reported that assess the
small-sample performance of the various bootstrap methods. The variance of
the KME, confidence bands for the survival curve, confidence intervals for the
survival curve at a fixed time and confidence intervals for quantiles are exam-
ined. Finally, we apply the various bootstrap methods to real data in Section
4.

2. SIMULATION STUDIES

Let D™ be the data. For example, D™ = ((T1,61),...,(T,6,)) for
the standard random censorship model. Consider a random quantity R, =
n(D™, P) with distribution L,. We wish to estimate a parameter 8, = 6(L,),
some aspect of the distribution of R,,. Let i; denote the bootstrap estimates
of L, by method ¢ for: = 1,2,3,3". Also let 9; = H(Z;), the bootstrap estimate
of §,, by method :.

For the first simulation study, designated by A, we chose the following
random quantity and parameter.

A R(t) = F,(t) and 2(t) = Var(F,(t)).

For other simulation studies, designated by B, C and D, we obtained confidence
intervals and confidence bands as follows.

B Let R? = {n'?(F,(t) - F(t));0 <t < 7} with 7 defined in Theorem 1 in
Section 3. We obtained a confidence band for F on [0, 7] by obtaining a
real number U, such that P{supocicr nl2|F(t) — F(t)] < Uy} =1-—a.

C Let RS(t) = n'/%(F,(t) — F(t)). We obtained a confidence interval for
F(t) at a fixed time ¢ by obtaining values L. /2(t),Uyja(t) such that
P{Lopa(t) < n'?(Fo(t) — F(t)) < Uppa(t)} =1 — a.

D Let RP(p) = n'/2(F7Y(p) — F~'(p)). We obtained a confidence interval

for the pth quantile of F' by obtaining values Las2(p), Uay2(p) such that
P{Lap(p) < n'/*(F7'(p) = F7(p)) < Uspa(p)} = 1 — a.
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In study A we compared four estimates of the variance of the KME in terms
of mean squared error in the random censorship model. Our simulations dealt
with the case when the distributions were exponential. Before proceeding it is
crucial to determine what is the true variance that we are trying to estimate.
Let C be the information given in the data about the censoring variables.
Since C is ancillary for the estimation of any characteristic of the survival
curve, by the ancillary principle, the quantity that we should be estimating is
Var(F,(t) | C) and not Var(F,(t)). The exact conditional variance of F,(t) is
not generally obtainable due to the dependence between the observed time T
and indicator variable § except for the case of the proportional hazards model
(Chen, Hollander and Langberg, 1982). The exact conditional variance of F3,(t)
does not seem to be obtainable even for the proportional hazards model. We
note that the conditional variance varies from sample to sample. To evaluate
the mean squared error of the bootstrap estimates of the conditional variance
for 10 samples, we numerically proceeded as follows.

Step 1 Get one set of data (71,61),...,(Tn, 6) by generating the failure time
X from the standard exponential distribution and the censoring time Y’
from the exponential distribution with parameter A. Here, A was chosen
so that P(X > Y) = w, where w was set at .2, .4 and .6.

Step 2 This step is for evaluating numerically Var(F,(t) | C) where C is the
censoring pattern observed in the data set (7,61),...,(Tn,é,) in Step 1.
First we generated one data set “compatible” with the censoring pattern
C in the data set generated in Step 1, as follows. For ¢ = 1,...,n,

e generate X! ~ Exponential(1);

e generate Y/ conditionally on C: If §; = 0, then Y/ = T;. If é; = 1,
then generate Y; from the exponential distribution with parameter
A, conditional on being greater than T;; note that by the memory-
less property of the exponential distribution, this is equivalent to

Y! = T; + Exponential(});
o form (T!,6}) from X! and Y.

Tt

Get the KME for the data set (77,6}),...,(T.,6,). We repeated this a
large number of times (say, 100,000) and obtained numerically the true
conditional variance of F,(t), Var(F,(t) | C). Note that C remained fixed
for the 100,000 repetitions.
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Step 3 Generate one data set compatible with the censoring result in Step 1
as was done in Step 2. Calculate the four estimates of the variance of
F.(t), one by Greenwood’s formula and three by Bootstrap Methods 1,
2 and 3 (Bootstrap Methods 1 and 2 are equivalent but we applied both
methods for the sake of assessing the random error). Repeat this step
many (1,000) times and get the (estimated) mean squared error for the
various estimates.

Step 4 Repeat Steps 1 through 3 ten times to observe the effect of various
censoring patterns.

The results of this Monte Carlo study are shown in Table 2.1, where the
mean squared errors for the four estimates are reported. In our study, we also
obtained the biases and variances of the estimates, but these are not shown in
the table. Table 2.1(a) pertains to the estimates of variance, whereas Table
2.1(b) pertains to the estimates of standard deviation. For Study A we make
the following observations.

e For the variance estimates, when censoring was heavy, the estimate by
Bootstrap Method 3 was more biased but much less variable, giving
appreciably smaller mean squared error (the ratio of mean squared error
becomes as large as 1.14) compared with Bootstrap Method 1 or 2.

e For the variance estimates, the estimate by Greenwood’s formula per-
formed substantially better than the estimates by any of the bootstrap
methods except in the tail and when censoring was heavy. It gave larger
mean squared error in the tail with heavy censoring because it was
severely biased downward there. This phenomenon is well documented;
see for example Peto et al. (1977).

e For the standard ‘deviation estimates the results were very similar to
those of the variance estimates except in the tail. There, the bias of the
estimate by Method 3 was substantial enough so that the overall mean
squared error for Method 3 was larger than for Methods 1 and 2.

An interesting conclusion to be drawn from this study is that for estimating the
variance or the standard deviation of the KME, the estimate by Greenwood’s
formula should be preferred over the others (even though Bootstrap Method
3 performed better than other bootstrap methods). However, it should be
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kept in mind that our main objective here is to compare bootstrap methods,
as these are far more general in their applicability. For example, there is no
analogue to Greenwood’s formula for estimating the variability of estimates
of quantiles. (Actually one can estimate the variability of quantile estimates;
however, this requires estimation of the density, which is difficult for small
samples.)

For simulation study B, bootstrap confidence bands were obtained and
compared in the random censorship model and in the model with two types of
censoring. We used the bootstrap confidence bands derived from the following
proposition.

Proposition 1. (Akritas, 1986). Suppose that F is nondegenerate.
Choose ¢, (F,) from the bootstrap distribution so that

P {nlﬂ sup (

0<t<r

[F5(t) = FalO)[Bu(t)[Falt)]]) < cn(Fn)} =1-a

where

B.(t)=[1+ Co()]™Y, Cu(t) =n Z Siln—1)" Y n—1i+ 1~

i:T(,)St

Then if D,(t) = n~Y?F,(t)/Ba(1),
P{F(t) — ca(Fa) Da(t) < F(t) S Fat) + ea(Fa) Da(t),0 S t < T}ol-a

Since all bootstrap methods have the same valid limiting distribution as shown
in Theorems 1 and 2 in Section 3, we can apply the above proposition to all
bootstrap methods. For constructing a 100(1—a)% bootstrap confidence band,
we computed

nt'/? sup{

for each of 2,000 bootstrap samples and then approximated c.(Fn) by the

10 —E(t)l%%‘:o <t< 'r}

(1- a)lOOth percentile of these numbers. The number of simulations was
1,000 and the supremum was evaluated up to the second largest uncensored
observation.

To evaluate the performance of the bands we considered two criteria, the
coverage probability and the width of the bands. Before proceeding we need to
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explain exactly what we mean by “coverage probability” of a band {(L(2),U(#))
; 0 <t <7} Since, as was explained earlier, C is ancillary, we should condition
on it and therefore we should consider P {L(t) < F(t) <U(t); 0< ¢ <7|C},
the conditional coverage probability given C. Thus, to estimate the conditional
coverage probability given C of the band, we began by generating one data set
and we obtained the censoring pattern for that data set. Then we generated
1,000 data sets compatible with that censoring pattern, computed the bands
for each of these 1,000 data sets, and recorded the proportion of bands that
contain the true distribution function. This whole process was repeated 10
times, giving results for 10 different censoring patterns (Tables 2.2 and 2.3 give
the result for one censoring pattern; the results for other censoring patterns
were similar). The description of this process for the case of two types of
censoring is very similar, but nevertheless we describe it in detail below.

Step 1 For each i = 1,...,n, the failure time X; was generated from the
standard exponential distribution, the censoring time C; from the expo-
nential distribution with parameter A and the fixed censoring time w;
due to the termination of the study from the uniform distribution over
(0,b). Here, A and b were chosen to get the proper censoring weight. For
example A = 42013, b = 4.7604 for 40% censoring (i.e. P(X > V) = 4),
and A = .90587,b = 2.2078 for 60% censoring. Then form one data set
(T, wi, 6;) by taking T, = min(X;,Ci,w;), 6 = 1if T, = X, o; = .5 if
T: = C; and §; = 0 otherwise.

Step 2 To get a data set compatible with the censoring result in Step 1,
generate X! ~ Exponential(1), and if §; = 5, set C! = T:; otherwise
set (] = T; + Exponential(\). Then form (T}, w!, 6), where w! = w,,

T = min( X/, C!, w!), and 6 =1ifT! = X, 8= .5if T} = C!, and o =0
otherwise.

Step 3 From the compatible data set generated in Step 2, take bootstrap

samples and apply Bootstrap Method 3’ to get the bootstrap confidence
bands.

Step 4 Repeat Steps 2 and 3 many (1,000) times. The proportion of times
that the band contained the true distribution function was taken as the
estimate of the conditional coverage probability given the censoring pat-
tern.
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Table 2.2 summarizes the results of Study B for the model with two types of
censoring — fixed time censoring due to the termination of the study (uniform
distribution) and censoring due to other causes (exponential distribution). In
the table, c,(F,) reflects essentially the width of confidence bands, since D, ()
varies with time ¢ but remains the same for all bootstrap methods. Table 2.2
shows that in heavy censoring we got a very minor gain in the width of the
confidence band by Method 3'. For Table 2.3 we assumed the standard random
censorship model where the censoring times Y;,. ... Y, wereiid as in Simulation
Study A. We note that Bootstrap Method 3’ becomes identical to Method 3 if
all fixed censoring times are infinite or are greater than any censoring time due
to unrelated causes. But for the sake of assessing the random error we applied
Method 3’ here for Table 2.3. Method 3 bands had slightly narrower width
than Method 1 (and 2) bands. For example, in the case of 60% censoring,
the ratio of average widths of 95% confidence bands was 1.019. Note that
the results of Method 1 and Method 2 were very close, and so were those of
Method 3 and Method 3', as expected. This led us to believe that although the
advantage gained by using Method 3 was minor, it was statistically significant,
i.e. it was not due to random fluctuation.

Simulation Study C and D were done, but not reported here. The reader
is suggested to see Kim (1990) for detailed description and result.

The overall conclusions of the simulation studies are that Bootstrap Meth-
ods 1 (or 2) became more different from 3 as the censoring weight got heavier,
but that there did not appear to be a practical difference between those meth-
ods. It should be kept in mind, however, that Method 3 can be easily extended
to Method 3’ which is the only method with a firm statistical basis in the more
general setup in which there are two types of censoring.
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Table 2.1. (a) Mean squared errors of variance estimates of KME. The table
gives combined result for ten censoring patterns.

(number of bootstraps=800, number of simulations=1,000. The entry in
parentheses is the estimated standard error.)

n | cw t | MSEG | MSE1 | MSE2 | MSE3 Ratiol Ratio2
30 1'20% | 029 [.0019 10020 | .0020 | .0020 | 1.004 (.016) | 0.950 (.015)
0.51 | .0007 | .0009 | .0009 | .0009 | 1.011 (.039) | 0.815 (.018)
069 | .0003 | .0005 | .0005 | .0005 | 1.000 (.044) | 0.639 (.038)
0.92 | .0008 | .0010 | .0010 | .0010 | 0.987 (.021) | 0.812 (.023)
139 | .0032 | 0034 | .0034 | .0033 | 1.018 (.013) | 0.959 (.021)
40% | 0.29 [ 0028 [7.0030 | .0030 | .0029 | 1.018 (.013) [ 0.959 (.010)
051 | .0016 | .0020 | .0019 | .0019 | 1.021 (.017) | 0.854 (.022)
0.69 | .0015 | 0019 | .0019 | .0019 | 1.032(.034) | 0.817 (.041)
092 | .0034 | .0040 | .0039 | .0037 | 1.049 (.024) | 0.916 (.036)
139 | 0199 | 0199 | 0199 | 0186 | 1.067 (.012) | 1.043 (.067)
60% | 0.29°1 0042 | 0045 | .0045 | .0044 | 1.024 (.017) | 0.959 (.014)
051 | .0072 | .0092 | .0091 | .0082 | 1.092 (.048) | 0.877 (.017)
069 | .0140 | 0188 | .0188 | .0162 | 1.141 (.052) | 0.864 (.023)
092 | .0422 | 0470 | .0470 | .0424 | 1.115 (.030) | 0.978 (.056)
1.39 | 2479 | 1903 | 1901 | .1723 | 1.102 (.042) | 1.402 (.004)
40 1 20% [ 029 | .0009 [.0009 | .0009 | .0009 | 1.005 (.015) | 0.941 (.011)
051 | .0003 | .0004 | .0004 | .0004 | 1.020(.031) | 0.766 (.021)
069 | .0001 | .0003 | .0003 | .0003 | 1.001 (.045) | 0.556 (.054)
092 | .0004 | .0005 | .0005 | .0005 | 0.992 (.031) | 0.771 (.022)
139 | 0015 | 0016 | .0016 | .0015 | 1.010 (.015) | 0.949 (.014)
40% [ 029 [ .0011 | 0012 | .0012 | .0012 | 1.017 (.020) | 0.949 (.016)
051 [ .0007 | .0009 | .0009 | .0008 | 1.042 (.031) | 0.836 (.031)
0.69 | .0006 | .0008 | .0008 | .0008 | 1.021(.026) | 0.743 (.056)
092 | .0013 | .0015 | .0015 | .0015 | 1.029 (.031) | 0.854 (.028)
1.39 | 0078 | 0083 | 0084 | .0080 | 1.047 (.021) | 0.971 (.027)
60% | 0.29°] 0019 | 0020 | .0020 | .0020 | 1.030 (.020) | 0.955 (.012)
0.51 | .0025 | .0030 | .0030 | .0028 | 1.055 (.035) | 0.890 (.021)
069 | .0052 | .0069 | .0068 | .0061 | 1.125 (.037) | 0.856 (.030)
092 | 0176 | .0219 | .0221 | .0195 | 1.124 (.023) | 0.896 (.044)
139 | 1177 | 0908 | .0914 | .0879 | 1.037(.010) | 1.305 (.115)

Key to Table 2.1 (a)

n=sample size:

cw=censoring weight.
t=time, corresponding to the .25, 4, .5, .6 and 75th quantiles of the standard

exponential distribution function.

MSEG, MSE1, MSE2, MSE3=average of ten observed mean squared error(x 1, 000)
of the variance estimate of the KME over ten censoring patterns by Green-

wood’s formula and Bootstrap Methods 1, 2 and 3, respectively.

Ratiol =average of ten ratios of the observed mean squared error by Method 1

(and 2) to the observed mean squared error by Method 3.

Ratio2=average of ten ratios of the observed mean squared error by Green-

wood’s formula to the observed mean squared error by Method 3.

‘The estimated standard error of each ratio (Ratiol and Ratio2) was calculated

using the formula: standard error estimate = \/2,121(12, — R)2/9 where

R; is the observed ratio for the ;th censoring pattern.
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Table 2.1. (b) Mean squared errors of standard deviation estimates of

KME. The table gives combined result for ten censoring patterns.
(number of bootstraps=3800, number of simulations=1,000. The entry in

parentheses is the estimated standard error. )

n cw t MSEG | MSE1 | MSE2 | MSE3 Ratiol Ratio2
30 1 20% | 0.29 | 0.0911 | 0.0953 | 0.0949 | 0.0948 | 1.004 (-013) | 0.961 (.013)
0.51 | 0.0239 | 0.0290 | 0.0286 | 0.0286 | 1.007 (.035) | 0.833 (.016)
0.69 | 0.0102 | 0.0158 | 0.0154 | 0.0157 | 0.996 (.044) | 0.651 (.040)
092 | 00250 | 0.0295 | 0.0297 | 0.0301 | 0.983 (.022) | 0.828 (.021)
1.39 | 01369 | 0.1325 | 0.1327 | 01315 | 1.007 (.011) | 1.034 (.056)

40% 1020 [ 0.1203 | 0.1259 | 0.1251 | 0.1246 | 1.008 (011) | 0.966 (.008)
0.51 | 00473 | 0.0547 | 0.0541 | 0.0540 | 1.009 (.020) | 0.872 (.025)
0.69 | 0.0372 | 0.0449 | 0.0443 | 0.0438 | 1.014 (.033) | 0.840 (.050)
092 | 0.0816 | 0.0840 | 0.0832 | 0.0818 | 1.021 {.020) | 0.993 (.083)
1.39 | 07403 | 0.4539 | 0.4546 | 0.4563 | 0.998 (.012) | 1.550 (.272)

5% 1 6.20 | 0.1706 | 0.1772 | 0.1775 | 0.1760 | 1.007 (.013) | 0.963 (.012)
0.51 | 0.1561 | 0.1818 | 0.1816 | 0.1719 | 1.048 (.030) | 0.905 (.017)
0.69 | 0.2403 | 0.2717 | 0.2713 | 0.2516 | 1.070 (.027) | 0.939 (.055)
092 | 0.7697 | 0.5559 | 0.5584 | 0.5564 | 1.012 (.038) | 1.332 (.176)
1.39 | 5.5550 | 1.9104 | 1.9080 | 2.0820 | 0.921 (.029) | 2.629 (.237)
40 | 20% [0.29 | 0.0513 | 0.0540 | 0.0544 | 0.0540 | 1.003 (.012) [ 0.949 (.010)
0.51 | 00134 | 0.0173 | 0.0175 | 0.0172 | 1.014 (.028) | 0.780 (.021)
0.69 | 0.0055 | 0.0094 | 0.0096 | 0.0096 | 0.997 (.044) | 0.564 (.054)
092 | 0.0143 | 0.0178 | 0.0179 | 0.0182 | 0.986 (.030) | 0.784 (.021)
1.39 | 0.0705 | 0.0726 | 0.0724 | 0.0723 | 1.002 (.014) | 0973 (.019)
30% 1020 [ 0.0638 | 0.0673 | 0.0675 | 0.0667 | 1.012 (-020) | 0.957 (.016)
0.51 | 0.0264 | 0.0316 | 0.0322 | 0.0309 | 1.034 (.029) | 0.850 (.032)
0.69 | 00179 | 0.0237 | 0.0232 | 0.0232 | 1.009 (.027) | 0.753 (.059)
092 | 0.0368 | 0.0419 | 0.0418 | 0.0415 | 1.010 (.030) | 0.875 (.035)
1.39 | 0.3051 | 0.2200 | 0.2312 | 0.2315 | 1.001 (.018) | 1.251 (.189)
60% 1 0.20 [ 0.0919 | 0.0973 | 0.0966 | 0.0952 | 1.018 (.017) | 0.964 (.012)
0.51 | 0.0733 | 0.0835 | 0.0829 | 0.0804 | 1.030 (.027) | 0.909 (.022)
0.69 | 01121 | 0.1341 | 0.1334 | 01247 | 1.073 (.028) | 0.899 (.051)
092 | 0.3624 | 0.3281 | 0.3208 | 0.3149 | 1.048 (.021) | 1.133 (.120)
1.39 | 3.2827 | 1.2265 | 1.2283 | 1.3375 | 0.926 (.031) | 2.395 (.324)

Key to Table 2.1 (b)

n=sample size: cw=censoring weight.

t=time, corresponding to the .25, .4,.5,.6 and 75th quantiles of the standard
exponential distribution function.

MSEG, MSE1, MSE2, MSE3=average of ten observed mean squared error(x 1,000)
of the standard deviation estimate of the KME over ten censoring patterns
by Greenwood’s formula and Bootstrap Methods 1, 2 and 3, respectively.

Ratiol=average of ten ratios of the observed mean squared error by Method 1
(and 2) to the observed mean squared error by Method 3.

Ratio2=average of ten ratios of the observed mean squared error by Green-
wood’s formula to the observed mean squared error by Method 3.

The estimated standard error of each ratio (Ratiol and Ratio2) was calculated

using the formula: standard error estimate = \/221(}?«’ — R)?/9 where

R; is the observed ratio for the ;th censoring pattern.
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Table 2.2. Bootstrap confidence bands of survival curve for model with two
types of censoring. The table gives the result for one censoring pattern.
(number of bootstraps=2,000, number of simulations=1,000 and sample size
n=40. The entry in parentheses is the estimated standard error.)

Method 1 Method 2 Method 3/
cw l-a C.P. cn{Fn) C.P. cn(Fn) C.P. cn(Frn) | Ratio
40% 95 964 1.241 962 1.242 .959 1.232 1.008

(.008) | (.001) | (.006) | (.001) | (.006) | (.001) | (.001)
90 | 926 | 1108 | 922 | 11090 | 920 | 1.100 | 1.007
(.008) | (.000) | (.008) | (.000) | (.009) | (.001) | (.001)

80 | 826 | 0958 | 823 | 0958 | .823 | 0.955 | 1.004
(:012) | (.000) | (.012) | (.000) | (.012) | (.001) | (.001)
60% | .95 | .984 1.209 | 981 1.209 | 977 | 1194 | 1.013

(004) | (.001) | (.004) | (.001) | (.005) | (.001) | (.001)
90 | 953 | 1070 | 952 | 1.070 | .950 | 1.060 | 1.010
(.007) | (.001) | (007) | (.001) | (.007) | (.001) | {.001)
80 | 878 | 0916 | 880 | 0915 | 874 | 0908 | 1.009
(.010) | (.001) | (010) | (.001) | (.010) | (001) | (001)

Table 2.3. Bootstrap confidence bands of survival curve for standard
random censorship model. The table gives the result for one censoring
pattern. (number of bootstraps=2,000, number of simulations=1,000 and
n=40. The entry in parentheses is the estimated standard error.)

Method 1 Method 2 Method 3 Method 37
cw [ 1-a | GP. [ cnlFn) | CP. [calFa) | CF. [ cn(Fa) | OP. | en(Fa) | Ratio
T 30% .95 962 1.238 962 1.240 962 1.229 958 1.229 1.008
(006) | (.001) | (.006) | (.001) | (.006) | (.001) | (006) | (.001) | (.001)

90 | 922 1.103 | .922 1.104 918 | 1.004 914 | 1.095 | 1.008

(.008) | (.001) | (.008) [ (.001) | (.009) | (.001) | (.009) | (.001) | (.001)

80 | .837 | 0.952 840 | 0.954 834 | 0.946 832 | 0.947 | 1.006

(012) | (.000) | (.012) | (.000) | (.012) | (.001) | (.012) | (.001) | (.001)

160% | 95 | 980 | 1.197 | .981 1.195 979 | 1.175 979 | 1.175 | 1.019

(.004) | (.001) | (.004) | (.001) | (.005) | (.001) | (.005) | (.001) | (.001)
90 | 944 | 1.055 | 946 | 1.054 | .942 | 1.039 | .941 1.039 | 1.016
(:007) | (001) | (.007) | (001) | (.007) | (.001) | (.007) | (.001) | (.001)
80 | 877 | 0.899 | 876 | 0899 | 872 | 0888 | 873 | 0.888 | 1.013
(010) | (0o1) { (.010) | (001) | (011) | (-001) | (.011) | (.001) | (.001)

Key to Tables 2.2 and 2.3:

cw=censoring weight.

C.P.=observed coverage probability of confidence bands.

cn(Fn)=average of 1,000 c,(F,) in Proposition 1 which is proportional to the
width of confidence band.

Ratio=in Table 2.2 average of 1,000 ratios of width 1 to width 3’, in Table 2.3
average of 1,000 ratios of width 1 to width 3.

The estimated standard error of Ratio (average ratio) was obtained from 1,000
ratios.
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3. PROOFS OF WEAK CONVERGENCE RESULTS

Akritas (1986) proved weak convergence of the bootstrapped KME for
Method 1. In this section the weak convergence of a properly standardized
KME by Bootstrap Methods 3 and 3’ is proved. Theorem 1 pertains to the
standard random censorship model and Theorem 2 pertains to the model with
two types of censoring. It turns out that the properly normalized bootstrapped
versions of the KME by Methods 1, 3, and 3’ have the same limiting distribu-
tions.

Theorem 1. Assume the random censorship model where the failure time
X has distribution function F and the censoring time ¥ has continuous dis-
tribution function G. Let H be the distribution function of the observed time
(H =1-(1—=F)1-G)). Let F: be the Kaplan-Meier estimate of F,
computed from the data resampled by Bootstrap Method 3. Then for almost
every infinite sequence (11, 61),(1%,02),...,as n — 00

(=

for any 7 < T = sup{t : H(t) < 1}, where W is a mean zero Gaussian process
with independent increments and variance function given by

) 4 W in D0, 7]

Var (W(1)) =/ L dF(s).

4 (1 = F(s))(1 = H_(s))

Proof. For Bootstrap Method 3 we have the General Random Censor-
ship Model (see Gill 1980, p. 55) since each censoring variable has a different
distribution. Theorem 4.2.1 of Gill (1980) is general enough to accommodate:

e the General Random Censorship Model.

e the dependence of F,, which is the distribution function of the resampled
failure time X7, on n.

e the discontinuity of F;,.

The martingale arguments of Gill (1980) apply conditionally on a specified
sequence {(T},8;),¢ = 1,...}. The proof of our weak convergence theorem
consists mainly of two steps:
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For almost every infinite sequence {(T},6;),i = 1,...} (we will use the
terminology conditionally almost surely),

Fro

1. Zxt) = (_LT?tT—) t € [0,7] can be represented as a

stochastic integral with respect to a martingale and is therefore
a martingale (for a more precise statement, see (3.2), (3.3) and the
remarks following (3.4) below).

2. The martingale Z satisfies the Conditions (I) of Theorem 4.2.1 of
Gill (1980) which are sufficient conditions for the weak convergence
of the martingale Z.

For Bootstrap Method 3, we resample
Xi~ F,

Y ~ L7 which is represented as
LM (t) = 1{6; = 0)I(t € [T,,oo
(Ga(t) - ( DIt € [T;,00))
+I1(6; =1 ,
=Y G(T5)
then form T = min( X7, Y}*), &7 = I( X:< YY), 7=1,...,n (Note: In his
treatment of the General Random Censorshlp Model Gill allows the possibility

that L? be a subdistribution function.)
We define stochastic processes by

Ni(t) = #{j:T; <tand & =1,5=1,...,n},
where # denotes the number of elements in a set,

Vi) = #{: T > 1),

n

Mi®) = Ni0) [ Vils)din(s),

where the function A, is defined by
1
A(t) = —_—d )
() A;,t] 1-F,_(s) Fats)
Jot) = I(V:(t) > 0).

It can be shown that M is a zero-mean square-integrable martingale with
bracket function ’



212 Ji-Hyun Kim

L)1) = [ VI = Mals)) dAa(s) (3.1

where AA = A — A_ for any right continuous function with left-hand limits
(see Appendix A of Kim (1990) for the proof that M is a martingale with
respect to an appropriate filtration).

Define the stopped process F! on [0, 00) by

Fi(t) = Fu(tA Tj) (3.2
and let
Fr(t) ~ Fl(t)
1 — Fit)
Let 7, be any number such that F,(7,) < 1. Then from equation (3.2.13) of
Gill (1980) we have the representation

Qn(t) = ﬁ( ) for t € [0, 00) (3.3)

— F*_(s) Jx(s)
[o.4 I—F()V(S)

n

QL) = Vn

dM>(s) for t € [0,7,]. (3.4)

We remark that Z3(t) = \/E(Fli)p_f’t‘)t)) need not be a martingale since
the expected value of this quantity is 0 i(or t = 0 but need not be 0 for £ > 0.
However

P*{Oittlp | @n(t) — Z(t) |# 0} = P{T(,(t) < 7}
< {H.(7)}" — 0 conditionally a.s.

since H,(7) — H(7) < 1 a.s. Hence Q}(t) and Z;(t) have the same limiting
distribution. Moreover, since a.s. as n — oo F,(r) — F(7) < 1, the repre-
sentation (3.4) is valid over [0, 7] conditionally a.s. for large n. Finally since
Ja(s) = 1(0 £ s < T;,y), Jn(s) can be trivially ignored in the representa-
tion (3.4).

Relations (3.1) and (3.4) imply that @)} is a square-integrable martingale
with bracket function

o [ (Lo Ea )} i)
<Qn>(t>—/[0't](1_Fn(8)) ey (1= A(s)) dAns).

Now we proceed to check Conditions (I) of Theorem 4.2.1 of Gill (1980). The
bootstrap version of Conditions (I) is as follows.
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Conditions (I):

a. F, converges uniformly on [0,7] a.s. to F as n—o00; A = | = dF is
finite on [0, 7].
b. There is a function & that is left continuous with right-hand limits and is of
—F* \2
bounded variation on [0, 7] such that (IT—%.:) v=J,, converges uniformly
on [0, 7] in conditional probability a.s. to k.

c. V;(t) = oo in conditional probability a.s. as n — oo for each ¢ € [0, 7].

Conditions (I).a is clear by the strong uniform consistency of F, (Foldes,
Rejté and Winter, 1980) and the definition of 7. To check Condition (I).b we
need the following lemma. The proof of the lemma can be found in Kim (1990).

Lemma 1. When bootstrapping is done by Method 3,

1 L(t) — G(t) uniformly on [0,7] a.s. as n — oo.
n j
!

As pointed out in Gill (1980, p. 70) it can be shown that Lemma 1 is a
sufficient condition for

*

‘7/1" LA (1-F_)(1-G-)=1— H_ uniformly on [0, 7] a.s.. (3.5)

Moreover, since supggc, | F(t) — Fo(t) IL 0 (Theorem 4.1.1 of Gill, 1980)
and supggc, | Fu(t) — F(t) |— 0 a.s., we have

Fr_(t) I5 F_(2) for all ¢ in [0, 7). (3.6)

Let h = (11':_1;;)2 =5~ From (3.5) and (3.6), we have

L=F\'mopey ditional
=F )V onditionally a.s
Assuming now that F' is continuous, then & is left continuous with right-hand
limits and A+ is of bounded variation, so that Condition (I).b is satisfied. Re-
lation (3.5) implies Condition (I).c. Now since all parts of Conditions (I) are
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satisfied, from Theorem 4.2.1 of Gill (1980) and the remarks following (3.4)

we have
Z: % W in D[0,7] conditionally as.,

where the variance function of the limiting mean zero Gaussian process with
independent increments is

1
/h(l—AA)dA:/(l_F)(l_H_)dF

(note that 1 — F = (1 — AA)(1 = F.)).

For the case in which F has discontinuities, the same result can be proved
by the arguments of Akritas (1986, p. 1037). In those arguments, the general
random censorship model in resampling has no role, so that the arguments
can be applied directly to our situation. Now the proof of the theorem is
complete. O

In Theorem 1 we assume that the censoring distribution is continuous. The
assumption of continuity of the censoring distribution simplifies the proof of
uniform convergence in Lemma 1. For Bootstrap Method 3’ in the model with
two types of censoring, the same weak convergence result is proved. Once
again we assume the continuity of the censoring distributions. We conjecture
that the same results hold for any censoring distributions.

Theorem 2. Suppose that the failure time X has distribution function
F and the censoring time C due to other causes has a continuous distribution
function K. Assume that all the fixed censoring times wy,...,wy are known
and that the empirical c.d.f. of the w’s converges to a continuous c.d.f. U for
all t. Suppose that the failure time, the fixed censoring time and the censoring
time due to other causes are independent. Let H = 1—(1-F)(1-K)(1— U) =
1—(1—F)(1—G). Let F;and K; bethe Kaplan-Meier estimates of F}, and
K, computed from the data resampled by Bootstrap Method 3, respectively.
Then for almost every infinite sequence (T, w;, 61), (T3, we,82),..., a8 m — 0O

v

for any 7 < T = sup{t : H(t) < 1}, where W is a mean zero Gaussian process
with independent increments and variance function given by

Fr— F,

d :
T ) S W in D[0, 7]
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1
Var (W(t)) = dF(s).
W)= J, o TP 7
Proof. For Bootstrap Method 3’, we resample
X; ~ an
Y ~ L} which can be represented as
L2(t) = I(8; # V)I(t € [T}, 00))
_ W) — Ku(T))
+(6 = 11 € (1) =20
+1(8; = 1)I(t € [w;, 00)),
then form T} = min( X7, Yr), 8 =I1(T; = X)) +5I(Tr < X3, T < wy); j =
l,...,n. Theorem 2 follows from the lemma below. The proof of the lemma

can be found in Kim (1990).

Lemma 2. When bootstrapping is done by Method 3/,

%2:1 L%(t) — G(t) uniformly on [0,7] as. as n — co. O
J=

4. AN APPLICATION TO REAL DATA

In this section the various bootstrap methods are applied to a data set in-
volving survival times after treatment for patients with malignant melanoma.
In the period of 1964-73, 225 patients with malignant melanoma (cancer of
the skin) had radical surgery performed at the Department of Plastic Surgery,
University Hospital of Odense, Denmark. All patients were followed until the
end of 1977. The survival time since the operation was censored by death from
other causes and also by the termination of the follow-up period. Thus, asso-
ciated with each individual is the vector (Xi,w;, C;) where X; is the survival
time if there was no censoring, w; is the censoring time due to the termination
of the study, and C; is the time of death or withdrawal due to other causes.
Note that the w;’s are known for all patients since we know the times of oper-
ation for all patients. A full listing of the data is given in Andersen, Borgan,

215
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Gill and Keiding (1993). In analyzing this data set, it was found that sex was a
significant risk factor, with men having higher risk than women; see Andersen
et al. (1993). As explained in Section 1, Bootstrap Method 3’ is the appropri-
ate bootstrap method for this data set since we have two types of censoring,
one due to the termination of study and the other due to other causes.

As pointed out in Akritas (1986), the bootstrap bands are not monotonic
towards the tail; this was corrected by replacing the values of a band at these
points of nonmonotonicity by the preceding values. We bootstrapped 4,000
times for both men and women. When we increased the number of bootstraps
to 8,000 and 16,000 the resulting difference was negligible. Figure 1 shows that
Method 3’ gives slightly narrower bands in the men’s data.

1.0

KME of survival curve

— .. e confidence band by method 1

09

1 [l COV — — -~ confider:ce band by method 3'

08

Probability

0.7

06

05
1

survival time (days)

Figure 1. 90% boostrap confidence band of survival curve for men in
melanoma data. (All the graphs were interpolated linearly between
observations for convenience in plotting)
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We also obtained bootstrap confidence intervals for survival curves at fixed
times, and bootstrap confidence intervals for the .25th quantile of F' in the
data for the men. The results are reported in Kim (1990).

5. CONCLUSION

We proposed a new bootstrap scheme, called Method 3, that acts condi-
tionally on the censoring pattern. The numerical results in Section 2 suggest
that Method 3 performs at least as well as Efron’s scheme (Method 1 and 2)
overall, and gives minor gains in efficiency (i.e. smaller mean squared error
for the variance estimate of the KME and narrower width of confidence bands
or intervals) when censoring is heavy. Even though the gains obtained by
Method 3 are minor, we believe that Method 3 should be preferred to Method
1 (2) since its statistical basis in the random censorship model is more sound.
Moreover it can be extended to Method 3’ which is the most appropriate when
we have the two types of censoring as in melanoma data described in Section
4.
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