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A Uniform CLT for Continuous Martingales

Jongsig Bae ! and Shlomo Levental ?

ABSTRACT

An eventual uniform equicontinuity condition is investigated in the
context of the uniform central limit theorem (UCLT) for continuous
martingales. We assume the usual integrability condition on metric en-
tropy. We establish an exponential inequality for a martingales. Then
we use the chaining lemma of Pollard (1984) to prove an eventual uni-
form equicontinuity which is a sufficient condition of UCLT. We apply
the result to approximate a stochastic integral with respect to a mar-
tingale to that of a Brownian motion.
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1. INTRODUCTION AND MAIN RESULTS

Let A = (Q, (F)i»0,F, P) be a stochastic base and (U, d) be a metric space.
Foreach u € U and n € N, we assume that X, (u,t)is a martingalein0 <t <1
relative to A.

This paper discuss an eventual uniform equicontinuity condition in the fol-
lowing sense: Ve > 0, 36 > 0 such that

limsup P{ sup sup |X,(u,t) — X,(v,t)] > €} <e (1.1)
n d(u,v)<6 0<tL1

We will use some notations: The quadratic variation process of the process
X, denoted [X, X] = ([X, X]¢)>0, is defined by [X, X] = X?—2 [ X_dX where
X_ is the process whose value at s is given by (X_), = lim,_; s Xy, (X_)o =
0. We simply denote [X] to mean [X, X]. The jump process associated the
process X, denoted AX = (AX;);0, is defined by AX; = X; — X;_. For a
metric space (U,d) and u > 0 we define a packing number by

v(u,U,d) = max{m : There exists a subset {u1, -+, un} C U satisfying
d(u;,uj) > u fori#j}.

We will prove the following

Theorem 1. Assume
(a) fy[lnv(xw,U,d)]"?du < oo,
(b) P{X,(-,-) is continuous} =1 for each n,
and
(c) P{sup(y,u)evxv %ﬂh 21} > 0asn— oo

Then the condition (1.1) is satisfied.

Remark. If we further assume the following eventual uniform equiconti-
nuity condition in ¢ for every u: Ve > 0, 36 > 0 such that

limsup P{ sup |X,.(u,s)— X.(u,t)| > €} <e, (1.2)
n ls—t]<6

then we have the following eventual uniform equicontinuity condition: Ve >

0, 36 > 0 such that

limsup P{ sup  |Xa(u,s) = Xa(v,t)] 2 €} <,
n p((u,8),(v,t)) <6
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where p((u, s), (v,t)) = max{d(u,v), [s — t|}.
The following corollary may be considered as a uniform central limit theo-
rem for continuous martingales.

Corollary 1. Assume (a) .(b) ,(c) and (1.2). Assume further that
[-th(u) - ‘Yn(v)]t - Cu,v(t)’

in probability for each (u,v) € U x U and t > 0 where Cy () 1s determin-
1istic and continuous in ¢ and (Cy, 0 (t) = Cu;,vk("‘))lsj,ksm 1s positive definite
matrix for each choice of m > 0, u jovgand 0 < s < ¢. Then X, converges in
distribution to (7, where G/(u, -) has Gaussian independent increments and is
continuous a.s. in u and s.

Proof. The martingale CLT (See Ethier and Kurtz ,1986, Theorem 1.4
p-339) provides the finite dimensional convergence of X, to (. The result
of Theorem 1 together with (1.2) implies the eventual uniform equicontinuity
condition of X,,. These two conditions implies the result. O

2. PROOF OF THE THEOREM

We will prove the theorem by using the usual chaining argument. For this
purpose we introduce some more notations. Define a covering integral

J(8) = /06[2 In —Aly]l”du,

where N(u) equals the smallest m for which there exist points tq,- .-, ¢, with
min;<i<m d(t,t;) < u for every ¢ in U. The following chaining lemma appears
in Pollard (1984, p.144).

Lemma 1. Let {Z(u) : u € U} be a stochastic process with continuous
sample paths whose index set has a finite covering integral J(-). Suppose there
exists a constant D such that, for all « and v,

2
P{1Z(u) — Z(v)| > pd(u,v)} < ‘Zexp{—g%} for p > 0.

et
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Then for 6 > 0
P{ sup |Z(u)— Z(v)] >26DJ(s)} < 2¢.
d(u,v)<6

In order to apply Lemma 1 in the proof of the theorem we need an expo-
nential inequality. The following exponential inequality is more general than
we need.

Lemma 2. Let X be a local martingale such that X(0) = 0, |A‘\l <

M a.s. and [X], £ K where M and K are finite constants and T is a finite

valued stopping time. If 0 < e < %—(‘7, then

2

€
P X,|> e} < dexp{——}.
{sup | |2 e} < dexpi-gr)

Proof of Lemma 2. We consider the stochastic differential equation

t
Z,o=1+ / Z._d(0X,),
Q

where 0 < 8 < 7 is fixed. According to Doleans-Dade formula we have
Z, = {exp(0X, — 201X, XD HTLe( 1+ 0AX, ) exp(~0AX.,)).

where the process [X, X]¢ denotes the path by path continuous part of [X, X].
Z, is a positive local martingale, and hence, by Fatou lemma, it is a supe[—
martingale. In particular, EZ, <1 Vt. Since In(1 + 2) — o 2 —z¢for el €2
and [X, X], = [X, X]{ + £,<:(AX,)* we have for each 0 <t < T:
1 .
Zt Z eXp{GXt - 502[1X,‘¥]f - 02 Z(A,‘X’s)?}

s<t
> exp{0X; — %02[}(, X}

3
> exp{0X; — 5021\’}.

Next we can calculate as follows:
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P{sup X, > ¢} < P{sup Z, > exp(fe — —3:02]\')}
s<T s<T 2
< (Esup Z,)exp(—0fe + §02[\’)
s<T 2
By Doob’s inequality for the super-martingale Z(T A t), we have
EsuwZ, < EZy+supEZ;
s<T s<T

< EZy+ EZ
<2

By choosing 6 = 5% with € € [0, 2%{—‘,—] we have

62

61\’}'

By working with —X instead of X we see that: If 0 < e < :2—3%, then

P{sup X, > ¢} < 2exp{—
s<T

62

P{sup|X,] > ¢} < 4dexp{——}.
s<T 6K

Remark. If X has continuous sample paths so that M = 0 then condition
on € in Lemma 2 disappears.

Proof of Theorem 1. First we note that the condition (a) imply the
finiteness of the covering integral J(-). Define a stopping time

Tp:= L AInf{0 < ¢ : [Xn(u) — Xa(v)]e > d*(u,v) for some (u,v) € U x U}

Note that [X,(u) — X,(v)],, < d*(u,v). By Lemma 2 we have, for each n > 0,

P{ sup |Xn(u,t) = Xn(v,t)] > nd(u,v)} < 4exp{—%}.

0<t< Ty

Also we get from (c) that P{r, < 1} — 0. So it suffices to prove our theorem
for X,(-,t A 7). By applying Lemma 1 with D = V3, we have
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P{ sup sup |X,(u,t)— X, (v,t)] >26DJ(6)} < 46.

d(u,v)<§ 0<t<Tn

Let € > 0. Choose 6 > 0 small enough to have 26DJ(6) A 46 < €. Then

lim sup P{ sup sup |X,(u,t)— X, (v,t)]> €} <e
d(u,v)<60<t<™n

This completes the proof of the theorem. O

3. CONVERGENCE OF STOCHASTIC INTEGRALS

Let {M,} be a sequence of continuous martingales in ¢. Assume [M,}; — 1
in probability. Let F be a collection of real valued left continuous functions
defined on [0, 1] which is uniformly bounded by 1. We define a metric d on
F by d&%(f,g) = SUP;eony [f(t) — g(t)|. We assume that [j[Inv(u, F,d)]'/2du
is finite. We consider X,.(f,t) = f; f(s)dM,(s), f € F, t € [0,1]. Then
it follows that, for each fixed f € F, X, (f,t) is also a martingale in . We
observe that(See Protter (1990, Theorem 29, p.68))

XA(f) = Xnlg)l:
Plse , — @G 24

_ pp sap  BUS8) = g()) (M),

> 1}
(f9)EFXF d*(f,g)
SUP;¢(o,1] [f() — |f0 [f(s) s)|d[M, ]

= LSl Ty
= P{ sup lf(S) 9(s)ld[M,], > 1}

(f9)eFxF
< P{ sup 2[ M), > 1}

(f.g)€EFxF

1
= P{{M,}; > -2-} — 0.

By applying the theorem we have an eventual uniform equicontinuity of

{X,}: Ve >0, 36 > 0 such that
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limsup P{ sup sup |[X,(f,t)— X.(g,t)] > ¢} <c.
n d(f,9)<6 0<t<1

If we also assume the condition similar to (1.2), then we have the eventual
uniform equicontinuity condition: Ve > 0, 36 > 0 such that

limsup P{ sup  |X,(f,5) = X,(g,8)] > €} <e
n pl(£:3).(9.))<5

where p((f,s), (g, 1)) = max{d(f, g), |s — t|}.
Then by the corollary we get that X,, converges in distribution to G where

G(f,t) = [§ f(s)dB is a.s. continuous in (f,{) and B is standard Brownian
motion.
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