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Existence and Uniqueness of the Smoothest
Density with Prescribed Moments !

Changkon Hong ! and Choongrak Kim 2

ABSTRACT

In this paper we will prove the existence and uniqueness of the
smoothest density with prescribed moments. The space of functions
considered is the Sobolev space W20, 1] and the target functional to be

minimized is the seminorm || f(™) ||;2, which measures the roughness
of the function f.
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1. INTRODUCTION
The ordinary moments of a probability measure g on [a,b] are given by
b .
. =/ Fdu(t), i=0,1,2,--

The moments for finite discrete mass distributions have been used in the phys-
ical sciences for a long time. The modern theory of moments begins in the
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late nineteenth century with the work of A.A. Markov (1898), Stieltjes (1884)
and Tchebysheff (1874). Modern versions of this theory are in Krein and
Nudel'man (1977) and Akhiezer (1961). The method of moments in statistical
theory began about the same time with the work of Karl Pearson (1894) and
Edgeworth (1886, 1887). Let

M, = {(c1,"*+¢n) | ‘/abd;t(t) =1}.

denote the convex set of all possible first n moments from probability measures

on [a,b]. It is well known that for every ¢ = (c1,--+,¢,) € M, there exist
finite discrete measures with these moments. For finite discrete measures p
on [a, b] with mass p;,---,px at distinct points @1, -, z) we define the index
of the measure I(y) through its support 21, -,z by counting one for each

2; € (a,b) and 1/2 for each z; € {a,b}. In the course of their investigation
into the problem of moments Markov and Stieltjes showed that ¢ € dM,, if and
only if ¢ has a unique representing finite discrete measure of index I(i) < n/2

and that each ¢ in the interior of M, has two representing measures # and T
of index (n + 1)/2. In case n = 2m — 1, # has index m and its support is

the m zeros of the m-th orthogonal polynomial pn,(z) defined with respect to
(C1a v sCn).

The purpose of this paper is to show the existence and uniqueness of the
smoothest density with given moments ¢;,---,c¢,. Here ‘the smoothest’ means
that it achieves the minimum roughness. Without loss of generality we will
assume [a, b] = [0, 1]. We formulate the problem as follows;

Problem (P1)
Minimize  J(f) on H
subject to:  Lif = fgtif(t)dt=c;, i=0,-+-,n
and f(t)>0 Vte[0,1].

where ¢, = 1, J is a functional which represents the roughness of f and H is
a normed linear space of functions on {0,1].

In this paper, we only consider the penalty functional J(f) = JL(FmN(t))2dt
for m > 1. The natural space H for this penalty functional will be Sobolev
space W2 defined as:
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W2 .= W2|o,1]
={fon(0,1] | f9 is absolutely continuous, i =0, - - - ,m—1,
and f™ e L?0,1] : },

with inner product <, >,

<hg>="T 1O + [ 1wy an

i=0
(cf. Adams (1975)).

2. EXISTENCE AND UNIQUENESS OF THE
MINIMIZER

For the problem (P1) to make sense, there must exist at least one density
f € W2 with the given moments ¢;,---,¢c,. It can be shown that there
exist infinitely many densities in W2 with the given moments ¢ = (c1,-++,¢n)
as long as c is an interior point of M,. Let ¢ be an interior point of M,,.
Then there exist n + 1 points ¢(®, ... ¢ in M,, such that the convex hull
Co{c(®,--- e} of ¢, ... ¢ contains ¢ as an interior point. For each
¢, there exists a discrete probability measure o(?) with finite support. We
can then choose a sequence {a}z)}f‘;l of probability measures with densities in

W32 such that aj(i) converges weakly to o() as j — oo. Let cy) be the first

n moments of O'J(i)‘. Since c is an interior point of Co{c'?,... ,c™}, we can

choose j* such that ¢ is an interior point of Co{cgo),---,cg-")} for all j > 5.
This proves the assertion.

The difficult part of problem (P1) is imposing the nonnegativity constraint
on our density f(t). The non-constrained problem where f is allowed negative
and positive values is relatively easy and is related to problems in generalized
spline smoothing. The classical problem is to fit a smooth curve f e W2
through “data points” (¢;,y; = f(t;)), i = 1,---,n such that J(f) is mini-
mized. Here the solution is the well known natural spline of order 2m — 1,
that is, it is a spline S(t) of order 2m — 1 with knots t1,---,t, and with
the end point conditions s()(t) = 0 for i = m,---.2m — 1 and for all
t < t, t 2ty (cf. Wahba (1990) and Eubank (1988)). The evaluation
linear functionals Li(f) = f(t;), i = 1,---,n are continuous in the Hilbert
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Space W2. In our problem we simply change these to the linear functionals
Li(f) = fab t' f(t) dt, i = 0,---,n. The solution in either case involves the
“representers” of the linear functionals and its existence and uniqueness are
obvious. In the classical case the solution is a spline and in our case it is simply
a polynomial of degree < 2m + n. The unconstrained solution to the prob-
lem of finding the smoothest density with moments ¢;,---,¢, is the unique
polynomial f of degree < 2m + n satisfying the n moment conditions and the
corresponding boundary conditions &)= fMN1)=0,k=m,---,2m — 1.
As mentioned earlier the nonnegativity constraint makes the problem consider-
ably more difficult and the existence and uniqueness are not obvious anymore.
To prove the existence and uniqueness of the solution, we need some mathe-
matical definitions and theorems. '

2.1 Background Mathematics

Every optimization problem can be expressed as the following form.
Problem (P):

Given a normed linear space (X, || ||), an objective functional J defined on X
and a constraint set M C X,

Minimize J(z) on M.

Without proofs we state some propositions pertinent to the optimization
problem (P).

Proposition 2.1. If $ C X is convex and closed, then S is weakly closed.
If X is a reflexive Banach space and S is convex, closed and bounded. then S
is weakly compact.

Proof. See Yoshida (1971). O
Proposition 2.2. Let D be a subset of X. A functional J : X — R is

weakly lower semicontinuous in D if and only if the set D,, = {z € D | J(X) <
m} is weakly closed for all real numbers m.

Proof. See Tapia and Thompson (1990). O
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Proposition 2.3. If the set M in problem (P) is weakly compact and the
functional J is weakly lower semicon’iruous on M, then problem {P) has at
least one minimizer.

Proposition 2.4. Suppose M C X s nonempty, convex and closed and
the functional J : M — R is continuous and convex in M. Then J is weakly
lower semicontinuous in M.

Definition. Let S be a subset of X and J be a functional on X. J is said
to have the infinity property in S if {z,} C S and || z,, || oc as n — oo
implies J(x,) — oo.

The following proposition can be proved using Proposition 2.3 and 2.4.

Proposition 2.5. Suppose X is a reflexive Banach space and M is a closed
convex subset of X. If the objective functional J has the infinity property in
M and it is continuous and convex in M, then problem (P) has at least one
minimizer.

Proposition 2.6. Assume that J : X — R is twice Gateaux differentiable
in a convex subset S of X. Then

1. J is convex in S & J" is p.s.d. relative to S.
2. J is strictly convex in S = J" is p.d. relative to S.

3. J is uniformly convex in S with constant C
< J" is u.p.d. relative to S with constant 2C.

2.2. Existence and uniqueness

We now prove the existence and uniqueness of the minimizer for the prob-
lem (P1). From now on J(f) will refer to fj (f(™(t))? dt and S will refer to a
subset of a Sobolev space. For given moments {c,--,c,}, let us define

S={f€W3'| l) L,—f=c,-,z'=0,---,n,
i) f(t)>0, vte[o,1] },
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where ¢g = 1 and L; is the i-th moment functional.
Lemma 2.1. S is convex and closed.

Proof. Convexity is obvious. Since W2 is a Reproducing Kernel Hilbert
Space (R.K.H.S , cf. Aronszajn (1950)), the evaluation functional #( f) = f(t)
for fixed t is a continuous linear functional. It is sufficient to show that L, is
continuous. Because L; is linear, it is continuous if and only if it is continuous
at 0. Using integration by parts,

ILJ|=I/tf )d |
< IS G+ b+ 0790 |

J=0 k=0
1 m—1

+ 1/ z+k+ 1))=Lem+ pm ) di |

By the Holder inequality, we get

| Lif |< Dy(S(1)TEL))Z + Dy || £ Y2, (2.1)
where
m—l 7
D, = (TG + k+1))72)2,
]=0 k=0
m—1
D= (J]G+k+1)"2m+2i+1)"1?

Choose {f,} € W2 which comerges to 0. ie., such that || f, [|— 0, as
n — oo. Since || fn ||I?= f.(D)Tf.(1)+ || f(’"’ |2:. inequality (??) shows
that lim,_. || fo ||= 0 implies L (fn) — 0 as n — oc, Vi, and hence L, is
continuous at 0, V2. O

Lemma 2.2. J is continuous and convex. If n > m — 1, then J is strictly
convex on S.
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Proof. Continuity of J is obvious. The first and second Gateaux deriva-
tives are given by

P =2 [ £ g1 d

.ﬂ@g)=2/%¢munhh

Since the inequality J"(f)(g,g) > 0 obviously holds for all g € T'(S, f) = {h €
‘/V2 | 3\ such that f + Ak € S}, by Proposition 2.3 J is convex. Suppose
J"(f)(g,g) = 0 for some g € T(S, f), then ¢g'™(t) = 0,a.e.. This implies that

g € Ilm-1[0,1], where I1,,_4[0, 1] is the space of polynomials of degree < m —1.
Since g € T(S, f),

Lig=0, Vi=0,---,n.

Let g(t) = Y75 a;t. Then we get

Ba=0, (2.2)
where
B = ) t = 0""’77’3 j__"Oa'"’m_lw
bi; = /f“ﬁ
= (ag, "+, am-1)T.

If n > m —1, then B has full column rank and Equation (2.2) has trivial solu-
tion as unique solution, this in turn implies g = 0. Therefore when n > m — 1
J is strictly convex. O

Lemma 2.3. If n > m — 1, then J has the infinity property in S.

Proof.  Since || f ||?>= f(1)Tf(1) + J(f), it is sufficient to show that
1)T£(1) is dominated by J(f). Remember that every element f in S satisfies
the moment constraints, i.e., (Lof, -+, L,f) = c. Now

¢ = Lif = ef(1) +/ ) F (8 dt, (2.3)

where
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o
C,JZ(—l)]H(z-*-k—{-l)—l, t=0,---,n, j=0,---,m——1,
k=0
m—1

hit) = (-1)" [[G+k+1)"1™, i=0,---,n.

=1

Equation (2.3) yields
1
Ef(1) = c—/ h(t) f)() dt,
0

where E = (eq,---,e,)T and h = (hg,- -+, hy). Since E is of full column rank
whenn > m—1,

f(1) = (ETE)'Ec — (ETE)'E” /01 h(t)f™(t) dt (2.4)
—d+ / £) £ (t) dt, (2.5)

where d = (ETE)"'Ec and g(t) = —(ETE)'Eh(t). By using (2.4) and the
Holder inequality, we get

£(1)TE(1) = d7d + /01 2dTg(t)f™ (1) dt

+([ O™ ([ g™ dt)
< dTdt || 2d%g e [ o

+Z / gi(t) F(t) dt)?
=0 n
< dTd+ [ 2d7g [l IO+ S N g N3 I
j=0
So we get an upper bound for || f |I?,
| £ 1I2< d7d+ || 2d7g Iz J(H)V2+ (1 + ) (f),

where v = Y%, || ¢: |32, as was to be shown. O

Now we state and prove the existence and uniqueness of the minimizer for

problem (P1).
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Theorem 2.1. (Existence and uniqueness of the solution of problem (P1))
Hn >m —1, then problem (P1) has a solution and it is unique.

Proof. Since W2 is a Hilbert space, it is a reflexive Banach Space. There-
fore, the existence of the solution follows from Lemmas 2.1, 2.2 and 2.3 and
Proposition 2.5. By Lemma 2.2 J is strictly convex provided n > m — 1. Sup-
pose fi # f; and both assumes the minimum, i.e., J(f) = inf;es J(f) = J(f2).
Let fo = af; + (1 — a)f;, where a € (0,1). Then by strict convexity of J,

J(fa) < ad(fi) + (1 = a)J(fa)
= J(fH)-

This contradicts that f; is a minimizer for problem (P1). O

Remark. When m = 2, the existence of the minimizer for problem (P1)
is guaranteed even when the condition n > m — 1 is violated. For the value
n = 0, any nonnegative linear function f on {0,1] which integrates to one is a
minimizer.
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