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ABSTRACT

This paper proposes an on-line learning controller which can be applied to nonlinear systems. The
proposed on-line learning controller is based on the universal approximation by the local affine map-
ping-based neural networks. It has self-organizing and learning capability to adapt itself to the new en-
vironment arising from the variation of operating point of the nonlinear system. Since the learning con-
troller retains the knowledge of trained dynamics, it can promptly adapt itself to situations similar to
the previously experienced one. This prompt adaptability of the proposed control system is illustrated
through simulations.
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1. INTRODUCTION

To apply linear control theory to nonlinear systems, linearization in the vicinity of a specific operating
point is inevitable. If there are variations in the operating point, the entire control system may be un-
stable due to the effect of the unmodeled dynamics. By using robust control, the system can maintain
stability within a moderate range(1]. Another method to overcome this problem is to employ a real-time
compensation using adaptive control{2]. By real-time adaptive compensation, the controller can main-
tain a desirable performance to some degree. However, if there are sudden changes in the parameters or
operating points of the nonlinear system, the control performance falls drastically due to the long tran-
sitional adaptation period. Furthermore, since the conventional adaptive control can not store the con-
trol information on the past environment, it can not rapidly adapt even when the same environment
ocecurs again.

To the contrary, a living thing always adapts itself quickly to any situation similar to that of the past
since it retains previously experienced one. Therefore, a similar mechanism to living things can be ap-
plied to the control of nonlinear systems with time varying environments. In neural adaptive control, lin-
ear compensators used in conventional adaptive control are replaced by neural networks. It results in a
good performance by handling the nonlinearity of the wide areal4]{5]. Multi-Layer Perceptron(MLP) is
widely used in neural adaptive control. But, depending on the complexity of the input/output mapping
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‘and the initial weight of the MLP, the error backpropagation learning may fall into a local minimum or a
flat area which may require a long learning time or lead to unsuccessful learning. Hence a fast adaptive
neural network is required for the on-line learning control systems.

This paper proposes an approach of on-line learning control for the nonlinear system in the environ-
ment of a varying operating point. For the fast on-line adaptation, we introduce a special type of neural
network referred to as Local Affine Mapping-based Network. This network is used for identifying the con-
troller and the nonlinear dynamics of a plant. In addition, simulations illustrate the prompt adaptation
capability of the proposed on-line learning control systems when the operating point varies.

. LOCAL AFFINE MAPPING-BASED NETWORK

Given that the input/output data, which is produced from the model, have a relation to the nonlinear
function(f : X€ R”— R) about the universal approximator for identifying input/output mapping has to be
considered. This approximator is usually expressed by using a specific parameterized element function.
A nonlinear mapping model is characterized by the form of element function, the combination method
of element functions and the estimation method of parameters. In this paper, we use the affine mapping
for element function. The affine mapping is defined as

yilx) =w’; x + b;. (1)

where w; is an n-dimensional parameter vector and &; is a bias constant. If a nonlinear mapping is
given, an affine mapping can represent local area mapping approximately. So, we can set the fuzzy-rule
as follows:

Rule(): IF x € Nle;, 32,

then fix)=yilx), i=1,., M. (2)

where Nl¢;, 6;) represents a neighborhood with center vector ¢; and radius é;, while M is the number of
fuzzy rules. In this fuzzy rule, the premise part is represented by the following radial basis function

pilx) =exp(—lx—e: 17 /7), i ..M (3)

where f|x—¢;| represents the euclidean distance between the input x and the central point ¢;. The vigil-
ance parameter 7; determines the magnitude of the neighborhood. For the satisfaction to partition of
unity([7], the membership function is normalized as follows:
14(x)
M

i) = (4)

;} wilx)

For the identification function F, we use the membership function for the integration of several affine

mappings.

F, x) = V_E ul(x)gi(x), xE X (5)
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where 4;(x) is a basis function that satisfies the partition of unity. The parameter set 6 expressed as
0={(¢e;,w;, b)| ; ER" W, ER" b;&R, i=1,2, .., M!. (6)
The identification of F can be realized by a connectionist model[5] as shown in Fig. 1. The con-

nectionist model is composed of 3 layers(input, hidden and output). Each unit of the hidden layer has 2
nodes:the RF and the LF node.
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Figure 1: Structure of the local affine mapping-based network

The RF node takes the central point of a specific receptive field as a parameter, where the output is
determined by radial basis function. The product of the LF and the RF node becomes the output of the
hidder: unit, i.e. the 7 th output of the hidden units is as follows:

hi(x) = pix) y i{x). (7)

The RF node transmit unchanged signals to the output unit. The output unit is made up of 2 nodes: the
Regulating node and the summing node. The role of the former is to regulate the output of the RF nodes
so that the sum of the RF nodes satisfies partition of unity. The regulating node produce inverse value of
the sum of the input. The role of the latter is to add localized affine functions that are produced by the
hidden units. The product of the outputs in the regulating node and summing node becomes final out-

put.

[l. ON-LINE LEARNING CONTROL SYSTEM

3.1 System Structure
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Figure 2 : Overall architecture of on-line learning control systems
The whole structure of the control system which was a the predescribed neural network is shown in
Fig.2. This control system is composed of the identification part and the control part. The identification
part continuously identifies nonlinear dynamics with the observed informations and consequently de-
termines parameters of control part in the on-line environment. The dynamics of the plant is expressed
by an input/output mapping of

Yk + 1)=fulk), ..., ulk—m), y(k), ..., ylk—n)). (8)

For the application of the predescribed neural network to the identification part, the input of the LF
node is defined by

x = [ulk), ..., ulk—m), y(k), ..., ylk—n), 1]. (9)
and the input of the RF node

x =ulk), ..., wlk—m), y(&), ..., yk—n)]. (10}
Then, the output of the identification part becomes

yk+1) =Y ulx) w'; x. (11)

where w; is a (n +m + 1) dimensional weight vector including bias which is expressed as
w; = [Wio, Wit ..o Witn +m]- (12)

This weight vector is updated in the on-line situation by the learning method described in the next sec-
tion. The structure of the control part also uses the predescribed neural network. In order to align it
with the identification part of the system, the RF node of the control part uses the same input as the RF
node of the identification part.
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The input of the LF node in the control part is
v =1rlk), ulk—1), ..., ulk=m+ 1), y(k), ... ylk—n+1), 1] (13)
where #(k) is the reference input. Then, the output of the control part becomes
(k) =T pita) 6" v. (14)
where 6; is the (n +m + 1) dimensional weight vector including bias and it is represented by

0; = [6i0, 01, ..o Bitn +m ] (15)

Since the control part basically represents the inverse dynamics of the plants, the weight vector of the
control part is determined by the following weight vector of the identification part.

1

010= » (16)
Wio

[ =1, e n+m (17)
Wio

3.2 Learning of System Identifier

The learning of the proposed model is composed of the unsupervised learning for the RF node and the
supervised learning for the LF node. In the identification part of the system. the learning of the con-
nectionist model is done by automatically generating the hidden units according to the given input
patterns and tuning the parameters. The learning strategy of the proposed model is expressed as:

- When a new input pattern is presented and if the output value of the regulating node is larger than
an arbitrary threshold value T, then it is regarded that the unit which is assigned to the receptive
field does not exist. So, a new hidden unit is generated. The input vector is used to initialize the
central point of the RF node and the weight value of the LF node is set arbitrarily.

- On the other hand if the regulating node’s output is smaller than T, we update the parameters out-
put regulates the parameters of the biggest hidden unit which has the largest RF node’s output.

The central point of the RF node is updated by

cilk+1)=cilk) + (x—ci(k). (18)

1
k+1
where % is the number of updating the 7th center of the RF node, ¢;. Also, the weight value of the /th LF
node is updated by

Rilk—1) x

L (B} = — — (19)
Giltk) 1+xTRilk— 1 x

Rk =Ri(k—1)—G(k) xT Ri(k—1), Ril0)=a |, (20)
wik)=wik—1) +G;(R) [ flx)—hix)], (21}
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where x is the {(# +m+ 1) dimensional vector [x 1], I is the unit vector, and « is a constant satisfying «
> 1L

IV. COMPUTER SIMULATIONS

To test the effectiveness of the proposed control system, it was applied to the following nonlinear sys-

tem.

y(k)+ ylk—1)
1+ 32k + y2k—1)

yk+1)= +13(k) (22}

Two types of signals were used as reference inputs.

Reference input 1:

7(B) = 0.6 + 0.25(300 — &) — 0.15(600 — k) — 0.35(900 — £} — 0.25(1200 — &)
+0.15(1500 —%) + 0.35(1800 — £). (23)

where 2= £%2000;% denotes the remaining modules, therefore the above mentioned signal has a period
of 2000.
Also s(f) is expressed as follows:

1 — eO.lt
s(t)= T E oo (24)

Reference input 2:

r(k) = 0.5 + 0.2 sin (7£/300) + 0.2 cos (n#/500) + 0.1 sin (z¢/700). (25)
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Figure 3 : Adaptation result for reference input 1:
(a) is the result of the linear model, (b) is the result of the model with ¥ = (0.01(33 hidden units produced)
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Figure 4 : Adaptation result for reference input 1:
(a) is the result of the linear model, (b) is the result of the model with ¥ =0.01(101 hidden units produced)
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Figure 5 : Adaptation result of the on-line learning control when the model was trained in the off-line environment un-
til k =4000 :

The result of the on-line learning control for reference input 1 is shown in Fig.3. Fig.3(a) is the result
when one hidden unit is used. It can be seen that the control system with a linear controller inevitably
encounters the transitional adaptation period whenever the operating point vary. It adapts totally to the
start even if a previously adapted situation arises again. In contrast to (a)’s linear models, as shown in
Fig.3(b), the system retains information about previously adapted situations. When there is a repeat of
the previously adapted situation, the control system can track the reference input instantly. In this ex-
periment, 101 hidden layer units were automatically generated when ¥ was set to 0.01. The result of the
continually varying reference input 2 is shown in Fig.4 where it shows a similar result to Fig.3. It can be
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seen that the initial transitional period in the proposed method is worse than in Fig.3. This is because
of the self-organizing it needs to do at the start where the hidden units are continuously generated. Fig.5
shows the result of real-time adaptation in an experiment where offline learning was done initially(k =
4000). It can be observed that the initial adaptation to a new input becomes fast in a transient period.

V. CONCLUSION

This paper has proposed an on-line learning control method using a local affine mapping;based neural
network. The proposed controller possesses a fast adaptability than those based on existing neural net-
works. In addition, unlike adaptive control based on linear models, it retains previously experienced dy-
namical information. Hence, it can rapidly adapt itself to any situation similar that of the past. The
proposed mode! has merits as follows:1) Comparing with the MLP-based controller, it provides lower
computational complexity and fast learning speed. 2) The local affine mapping provides effectiveness in
application to the on-line learning control. Affine mappings facilitate the design of the system by apply-
ing the linear system theory to each hidden units. The proposed control system will be extended to the

case of multi-input multi-output systems.
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