Thermodynamic Equilibrium Analysis of Copper Chemical Vapor Deposition from Cu(II) Hexafluoroacetylacetonate Precursor

Cu(II) Hexafluoroacetylacetonate 프리커서에 의한 구리 화학증착의 열역학적 평형조성 해석

  • 전치훈 (한국전자통신연구소 반도체연구단) ;
  • 김윤태 (한국전자통신연구소 반도체연구단) ;
  • 백종태 (한국전자통신연구소 반도체연구단) ;
  • 유형준 (한국전자통신연구소 반도체연구단) ;
  • 박동원 (경북대학교 공과대학 금속공학과) ;
  • 최병진 (보건전문대학 용접공학과) ;
  • 김대룡 (경북대학교 공과대학 금속공학과)
  • Published : 1995.09.01

Abstract

Chemical vapor deposition of copper from the Cu(hfac)$_2$, Cu(II) hexafluoroacetylacetonate precursor, has been thermodynamically investigated by the minimization of Gibbs free energy of the system. For the Cu(hfac)$_2$-Ar system, carbon incorporation into the deposited films was observed in all the process conditions, which is presumably inherent from the thermal decomposition of the Cu(hfac)$_2$, precursor. For the Cu(hfac)$_2$-H$_2$system, lower temperatures were required than those of the Cu(hfac)$_2$-Ar system for the depositon of the copper films. Furthermore, we identified that the appearances of the condensed phases were sequentially changed from the codeposits of C(s)+CuF(s) to C(s)+CuF(s)+Cu(s), C(s)+Cu(s), Cu(s), and C(s), when the H$_2$input ratio and th reaction temperature were increased.

Cu(hfac)$_2$,(Cu(II) hexafluoroacetylacetonate)를 프리커서로 하는 구리 화학증착에 대해 자유에너지 최소화법으로 열역학적 평형조성 계산을 수행하였다. Cu(hfac)$_2$-Ar계의 경우Cu(hfac)$_2$ 프리커서 자체의 열분해로부터 모든 공정조건에서 증착박막내로의 탄소 출입이 관찰되었다. Cu(hfac)$_2$-H$_2$,계에서는 Cu(hfac)$_2$-Ar계보다 낮은 온도에서 구리박막이 증착되며, H$_2$입력비 및 반응온도의 증가에 따라 응축상의 석출형태는 C(s)+CuF(s)로부터 C(s)+CuF(s)+Cu(s), C(s)+Cu(s), Cu(s), C(s)의 순으로 변화되는 것으로 나타났다.

Keywords

References

  1. Mat. Res. Soc. Symp. Proc. VLSI VI L.S. White;R.O.C. Blumenthal;H. McAdams
  2. J. Electrochem. Soc. v.112 no.11 R.L. Van Hemert;L.B. Spendlove;R.E. Sievers
  3. MRS Bulletin v.ⅩⅤⅢ no.6 A.E. Kaloyeros;M.A. Fury
  4. J. Electrochem. Soc. v.136 no.11 D. Temple;A. Reisman
  5. J. Electronic Materials v.19 no.3 A.E. Kaloyeros;A. Feng;J. Garhart;K.C. Brooks;S.K. Grosh;A.N. Saxena;F. Luehrs
  6. Mat. Res. Soc. Symp. Proc. VLSI Ⅴ Y. Arita
  7. 應用物理 v.59 no.2 平井敏雄;山根久田
  8. J. Chem. Phys. v.28 no.5 W.B. White;S.M. Johnson;G.B. Dantzing
  9. Acta Chem. Scand. v.25 G. Eriksson
  10. Chemica Scripta v.8 no.3 G. Eriksson
  11. ORNL/TM-5775 T.M. Besmann
  12. Appl. Res. Lab. no.TR88-008 Tech. Report J.A. Peters
  13. Thesis, Acta Univ. Ups. (Fac. Sci.) B. Nolang
  14. Natl. Bur. Std.(US) Ref. Data. Ser.(2nd ed.) JANAF Thermochemical Tables D.R. Stull;H. Prophet
  15. J. Phys. Chem. Ref. Data v.3 JANAF Thermochemical Tables., Suppl. M.W. Chase;J.L. Churnutt;A.T. Hu;H. Prophet;A.N. Syverud;L.C. Walker
  16. J. Phys. Chem. Ref. Data., Suppl. v.11 JANAF Thermochemical Tables M.W. Chase;J.L. Churnutt;J.R. Downey;R.A. McDonald;A.N. Syverud;E.A. Valenzuela
  17. Thermochemical Data of Pure Substances I. Barin;F. Sauert;E. Schultze-Rhonhof;S.S. Wang
  18. J. Vac. Sci. Technol. v.A11 no.1 V.M. Donnelly;M.E. Gross
  19. Mat. Res. Soc. Symp. Proc. on Advanced Metallization for ULSI Applications v.7 G.L. Griffin;W.G. Lai;A.W. Maverick;R. Kumar;P.K. Ajmera
  20. Proc. 103 Symp. on VLSI Tech. Kyoto, Japan N. Arita;Y. Arita
  21. J. Crystal Growth v.108 D.N. Armitage;N.I. Dunhill;R.H. West;J.O. Williams
  22. J. Electrochem. Soc. v.138 no.11 W.G. Lai;Y. Xie;G.L. Griffin
  23. AIChE Proc. Synthesis & Processing of Electronic materials, San Francisco v.14-16 R. Steger;L. Cadwell;R. Masel
  24. Int. J. Chem. Kinetics v.17 J.M. Roscoe;M.J. Thomson
  25. Semiconductor International P. Singer