Phase Equilibria and Processing of Pb_2Sr_2(Y_{1-x}Ca_x)Cu_3O_{8+\delta} Superconductors (x=0.4-0.6)

Pb_2Sr_2(Y_{1-x}Ca_x)Cu_3O_{8+\delta}초전도체 (x=0.4-0.6)의 제조방법 및 상평형

  • Published : 1995.09.01

Abstract

P $b_2$S $r_2$( $Y_{1-x}$ C $a_{x}$)C $u_3$ $O_{8+}$$\delta$/ samples were prepared with x=0.4~0.6 and small $\delta$. To minimize the extent of oxidative decomposition reaction which occurs during the preparation of this phase, two annealing steps were adopted : First, sintered samples of P $b_2$S $r_2$( $Y_{1-x}$ C $a_{x}$)C $u_3$ $O_{8+}$$\delta$/ are oxygenated under 100% $O_2$, which leads to a large $\delta$(e.g., $\delta$=1.8). Second, the resulting samples are deoxygenated under 0.1~1.0% $O_2$in $N_2$, lowering $\delta$ to desired values. This two-step annealing procedure minimized the extent of oxidative decomposition. However, even with the two-step annealing procedure, the oxidative decomposition of P $b_2$S $r_2$( $Y_{1-x}$ C $a_{x}$)C $u_3$ $O_{8+}$$\delta$/ cannot be completely suppressed if $\delta$ is to be reduced to maximize $T_{c}$. Electrical resistivity data show that $T_{c}$(onset) is a function of hole concentration in the Cu $O_2$layer, and the optimum hole concentration for the maximum $T_{c}$ is achieved when $Ca^{2+}$is substituted for $Y^{3+}$between 0.5 and 0.6 A $T_{c}$(onset)=80K has been observed for one such sample, and this is the highest $T_{c}$(onset) yet reported for this compound.ed for this compound.nd.

x=0.4-0.6이고 작은 $\delta$값을 갖는 P $b_2$S $r_2$( $Y_{1-x}$ C $a_{x}$)C $u_3$ $O_{8+}$$\delta$/초전도체시료를 제조하였다. 시료가 초전도체로 되기 위하여 작은 $\delta$값을 가져야 하는데 이를 위해 소결 후 직접 낮은 산소분압에서 annealing하면 산화성 상분해가 발생하여 과잉의 2차상이 생성된다. 따라서 제조과정중 산화성 상분해의 양을 줄이기 위하여 두 단계의 annealing 과정을 도입하였다. 즉 100% 아르곤 기체 분위기에서의 소결 후 먼저 100% 산소 분위기하에서 시료를 annealing하여 산화시킨 후 0.1~1.0% 산소분압하에서 annealing하여 작은 $\delta$값을 얻는 것이다. 얻어진 시료의 전기저항 측정결과 80K의 초전도 전이온도( $T_{c}$)가 얻어져 지금까지 이 화합물에서 보고된 결과중 가장 높은 $T_{c}$를 나타내었다. 그러나 본 연구에서 도입한 두단계 annealing 과정에 의해서도 작은 $\delta$값을 얻기 위하여는 약간의 산화성 상분해가 발생하여 깨끗한 초전도 전이과정을 블 수 없었다. 수 없었다..

Keywords

References

  1. Nature v.336 R.J. Cava;B. Batlogg;J.J. Krajewski;L.W. Rupp;L.F. Schneemeyer;T. Siegrist;R.B. van Dover;P. Marsh;W.F. Peck Jr.;P.K. Gallapher;S.H. Glarum;J.H. Glarum;J.H. Marshall;R.C. Farrow;J.V. Waszczak;R. Hull;P. Trevor
  2. Nature v.332 Z.Z. Sheng;A.M. Hermann
  3. Jpn. J. Appl. Phys. v.27 no.L209 H. Maeda;Y. Tanaka;M. Fukutomi;T. Asano
  4. J. Solid State Chem. v.6 no.526 J.M. Longo;P.M. Raccah
  5. Inorg. Chem. v.29 no.1829 M.-H. Whangbo;M. Evain;M.A. Beno;J.M. Williams
  6. Physica v.C157 no.124 M.A. Subramanian;J. Gopalakrishnan;C.C. Torardi;P.L. Gai;E.D. Boyes;T.R. Askew;R.B. Flippen;W.E. Farneth;A.W. Sleight
  7. Physica v.C161 no.390 H.W. Zandbergen;W.T. Fu;K. Kadowaki;G. van Tendeloo
  8. Phys. Rev. v.B36 no.4047 M.W. Shafer;T. Penney;B.L. Olson
  9. Physica v.C160 no.381 M.-H. Whangbo;D.B. Kang;C.C. Torardi
  10. Chem. Mat. v.1 no.277 P.K. Gallapher;H.M. O'Bryan;R.J. Cava;A.C.P.W. James;D.W. Murphy;W.W. Rhodes;J.J. krajewski;W.F. Peck Jr.;J.V. Waszczak
  11. Physica v.C158 no.155 H.W. Zandbergen;K. Kadowaki;M.J.V. Menken;A.A. Menovsky;G. van Tendeloo;S. Amelinckx
  12. Chem. Mat. v.1 no.548 L.F. Schneemeyer;R.J. Cava;A.C.P.W. James;P. Marsh;T. Siegrist;J.V. Waszczak;J.J. krajewski;W.F. Peck Jr.;R.L. Opila;S.H. Glarum;J.H. Marshall;R. Hull;J.M. Bonar