Film Properties of MOCVD TiN prepared by TDMAT and TDMAT/$NH_3$

TDMAT와 TDMAT/$NH_3$ 로 형성한 MOCVD(Metal Organic Chemical Vapor Deposition) Titanium Nitride 박막의 특성

  • 백수현 (한양대학교 재료공학과) ;
  • 김장수 (한양대학교 재료공학과) ;
  • 박상욱 (한양대학교 전자공학과) ;
  • 원석준 (한양대학교 재료공학과) ;
  • 장영학 (한양대학교 전자공학과) ;
  • 오재응 (한양대학교 전자공학과) ;
  • 이현덕 (삼성전자 주식회사 반도체 연구소) ;
  • 이상인 (삼성전자 주식회사 반도체 연구소) ;
  • 최진석 (삼성전자 주식회사 반도체 연구소)
  • Published : 1995.10.01

Abstract

Thin films of titanium nitride are formed using the tetrakis-dimethyl-amino-titanium (TDMAT(Ti[N($CH_3$)$_2$]$_4$)) under various conditions. The formation of TiN films has been obtained from the thermal decomposition of the Ti-precursor and the gas phase reaction between TDMAT and ammonia(NH$_3$). The resistivity of the MOCVD film can be attributed to their impurity. Especially the curve fitting graph of XPS data is revealed that main impurities in the films as carbon and oxygen make various interstitial compounds which has influenced physical and electrical properties of the film. In the contact hole with the aspect ratio of 3:1 and the diameter of 0.5${\mu}{\textrm}{m}$, the SEM morphology shows that the step coverage is more decreased in the films formed y flowing ammonia additionally than the films formed by pyrolysis of TDMAT and the phenomenon is probably related with the activation energy.

MOCVD(Metal-Organic Chemical Vapor Dposition) TiN 박막을 다양한 온도와 압력에서 tetrakis-dimethyl-amino-titanium(TDMAT (Ti[N($CH_3$)$_2$]$_4$))의 자체 열분해와 NH$_3$와의 반응을 사용하여 형성하였다. 비저항은 박막내의 불순물 함량에 의존하였는데 특히 XPS curve fitting 결과 주요 불순물인 탄소와 산소 같은 불순물들이 박막내에서 다양한 침입형화합물을 만들어 박막의 물리적, 전기적 특성에 영향을 준다는 것을 알았다. Metal-organic source만을 사용하여 TiN을 형성할 경우 지름이 0.5$\mu\textrm{m}$이고 aspect ratio가 3:1인 구멍에서 step coverage가 매우 우수하였으나 NH$_3$를 흘림에 따라 step coverage가 감소하는 것이 SEM으로 확인되었는데 이는 각각의 활성화에너지와 관련된 것으로 보인다.

Keywords

References

  1. J. Appl. phys. v.62 T. Okamoto;M. Shimizu;A. Ohsaki;Y. Mashiko;K. Tsukamoto;T. Matsukawa;S. Nagao
  2. J. Vac. Sci. Technol v.21 C.Y. Ting
  3. J. Electrochem. Soc. v.138 N. Yokoyama;K. Hinode;Y. Homma
  4. VMIC conference J.J. Hillman;M.J. Rice Jr.;D.W. Studinor;R.F. Forster
  5. Thin Solid Films v.140 R. Kuitz;R.G. Gordon
  6. Jpn. J. Appl. Phys. v.30 Arthur Sherman
  7. J. Electrochem. Soc. v.138 M.J. Buiting;A.F. Otterloo;A.H. Montree
  8. VMIC conference Ivo J. Raaijmakers;Raymond N. Vrtis;Gurtej S(et al.)
  9. J. Appl. Phys. v.170 A. Katz;A. Feingold;S.J. Pearton(et al.)
  10. Doan Appl. Phys. Lett. v.62 Gurtej S. Sandhu;Scott G. Meikle;Trury T.
  11. J. Electrochem. Soc. v.140 J.A. Prybyla;C.-M. Chiang;L.H. Dubois
  12. 1993 VMIC Conference T. Akahori;R. Murakami;Y. Morioak
  13. Jpn. J. Appl. Phys. v.29 Kazuya Ishihara;Katsumi Yamazaki;Hidenao Hamada;Koichi Kamisako;Yasuo Tarui
  14. J. Electrochem. Soc. v.140 A. Intemann;H. Koernor
  15. J. Electronic Mat. v.20 A. Katz
  16. Handbook of x-ray Photoelectron Spectroscopy C. Wagner;W. Riggs;L. Davis;J. Moulder;G. Muilberg