Communications

Consecutive Hydroacylation and Reduction of 1-Alkyne with 2-(Diphenylphosphino)benzaldehyde by $\mathbf{R h}$ (I)

Hyuk Lee and Chul-Ho Jun*
Department of Chemistry, Yonsei University, Seoul 120-749, Korea

Received May 22, 1995

One of good ways to make $\mathrm{C}-\mathrm{C}$ bond in organic synthesis is hydroacylation which is addition reaction of an aldehyde C-H bond across an alkene under transition metal catalyst. ${ }^{\text {t }}$ Although intramolecular hydroacylation has been studied in detail, ${ }^{2}$ limited number of intermolecular hydroacylations have been documented ${ }^{1}$ in spite of its usefulness. The major problem for intermolecular hydroacylation is the competition with decarbonylation, which has been used for elimination of aldehyde functional group in organic compounds. ${ }^{3}$ In order to solve its limitation, some model compounds such as 8 -quinolinecarboxaldehyde, ${ }^{4}$ aldimine, ${ }^{5}$ 2-(diphenylphosphino)benzaldehyde ${ }^{6}$ were applied for hydroacylation. Already hydroacylation of 1 -alkene with 2 -(diphenylphosphino)benzaldehyde has been studied (eq. 1). ${ }^{7}$ Reaction of 2-(diphenylphos-

phino)benzaldehyde (1) and 1 -alkene (2) in THF at $90^{\circ} \mathrm{C}$ for 4 h in the presence of $\left[\left(\mathrm{C}_{8} \mathrm{H}_{44}\right)_{2} \mathrm{RhCl}_{2}\right.$ (3) as a catalyst (5 $\mathrm{mol} \%$) gave a mixture of 4,5 and $6 .^{7}$ While 4 was the major
hydroacylated product, compound 5 and 6 supposed to be the ones derived from P-C bond cleavage and decarbonylation of 1 . Since hydroacylation of 1 -alkyne with aldehyde supposed to give a, β-unsaturated ketone, ${ }^{\beta} 1$-alkyne is another interesting substrate. This report deals with consecutive hydroacylation and reduction of 1 -alkynes with 2 -(diphenylphosphino)benzaldehyde as a model compound under $\mathrm{Rh}(\mathrm{I})$ catalyst.

When 1 was reacted with 1 -pentyne (7a) in THF at $90^{\circ} \mathrm{C}$ for 4 h in the presence of 3 as a catalyst ($10 \mathrm{~mol} \%$ based upon 1), a mixture of 4a, 5 and 6 was obtained in a $74: 3: 23$ ratio, determined by gas chromatography (eq. 2). ${ }^{9}$ Hydroacylated product, 4a was isolated in 30% yield (based on 1)

4a: $\mathrm{R}=n-\mathrm{C}_{3} \mathrm{H}_{7}$
4b: $\mathrm{A}=\mathrm{n}-\mathrm{C}, \mathrm{H}_{0}$
4c: $\mathrm{Axn}-\mathrm{C}_{6} \mathrm{H}_{13}$
4d: $\mathrm{Ax}_{5} \mathrm{CO}_{5} \mathrm{H}_{5}$

along with a small amount of branched alkyl ketone 8a, determined by GC-MSD. ${ }^{10}$ Saturated alkyl ketone 4a and 8a were unexpected products for this reaction,since hydroacylation of 1 -alkyne should have given a, β-unsaturated ketone. ${ }^{8}$ Any initial hydroacylated product, α, β-unsaturated ketone, was not determined. Other 1 -alkynes could also be used for this hydroacylation under identical reaction condition. The results are summarized in Table 1 .
When 1 was reacted with 1-hexyne (7b), 1-octyne (7c) and phenyl acetylene (7 d) in different mole ratios of substrates, corresponding saturated alkyl ketones, $\mathbf{4 b}, \mathbf{4 c}^{11}$ and $\mathbf{4 d}$ were obtained with a trace amount of branched alkyl ketone $8 .{ }^{10}$ The first step for this hydroacylation must be aldehyde C -

Table 1. Hydroacylation of 1-Alkyne (7) with 2-(Diphenylphosphino)benzaldehyde (1)

	$+\frac{\mathrm{H}}{\mathrm{H}} \underset{7}{=}$			
Entry	R	mole ratio of $1: 7$	Ratio ${ }^{a}$ of 4/5/6	Isolated Yield of 4
1	$n-\mathrm{C}_{3} \mathrm{H}_{5}$ (7a)	1:5	$74: 3: 23$	30\% ${ }^{\text {b }}$
2	$\mathrm{n}^{-\mathrm{C}_{4} \mathrm{H}_{9} \text { (7) }}$	1:5	98:2:0	26\%
3	$\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{13}$ (7e)	1:5	90: 10:0	26\%
4	$\mathrm{C}_{6} \mathrm{H}_{5}$ (7d)	1:5	98:0:2	23\% ${ }^{\text {d }}$
5	$\mathrm{n}^{-\mathrm{C}_{3} \mathrm{H}_{\mathrm{S}}(7 \mathrm{a})}$	3:1	79:12:9	75\%
6	$\mathrm{n}^{-\mathrm{C}_{4} \mathrm{H}_{9}(7 \mathrm{~b})}$	3:1	73: $23: 4$	84\%
7	$\mathrm{n}^{-\mathrm{C}_{6} \mathrm{H}_{13}}$ (7c)	3:1	76:19:5	88\%
8	$\mathrm{C}_{6} \mathrm{H}_{5}$ (7d)	3:1	61:39:0	53\%

${ }^{*}$ All reactions were carried out in THF at $90^{\circ} \mathrm{C}$ for 4 h under $10 \mathrm{~mol} \%$ of $\left[\left(\mathrm{C}_{8} \mathrm{H}_{1}\right)_{2} \mathrm{RhCl}\right]_{2}$ (3). Product yield lower than 1% is ignored.; ${ }^{\text {a }}$ Product ratio was determined by GC-MSD; ${ }^{\text {b }}$ contains 2% of branched alkyl ketone (8a); 'contains 1% of branched alkyl ketone (8b); ${ }^{\text {d }}$ contains 1% of branched alkyl ketone (8d); 'contains 2% of branched alkyl ketone (8 b); ${ }^{\prime}$ contains 1% of branched alkyl ketone (8c).

H bond cleavage of 1 by $\mathrm{Rh}(\mathrm{I})^{4}$ and coordination of 1-alkyne to lead intermediate 9 (eq. 3). Hydrometallation of 1-alkyne in 9 might generate acylrhodium(III) trans-l-alkenyl complex

10, and subsequent reductive elimination of 10 affords transα, β-unsaturated ketone 11. The reaction could not stop at this stage, and hydride reduction of 11 might produce 4 as a final product. There are two possible hydride sources, acylrhodium(III) hydride 12 and alkynylrhodium(III) hydride 13, generated from C-H bond cleavage of aldehyde 1 and 1 alkyne 7 by $\mathrm{Rh}(\mathrm{I})$.

12

13

If 12 reduces 11 to 4 , at least 3 equivalents of 1 based
upon 7 should be needed. That is, one equivalent of 1 must be used for hydroacylation of 1 -alkyne to give α, β-unsaturated ketones and two equivalents of 1 for the subsequent reduction of α, β-unsaturated ketone. When the reactions were carried out in a $1: 5$ mole ratio for 1 and $7,23-30 \%$ yields of hydroacylated products were isolated based upon 1 (Table 1. entries 1-4). By contrast, when the reactions were carried out in a $3: 1$ mole ratio for 1 and 7 , in which a limiting reactant was $7,53-88 \%$ yield of hydroacylated products based upon 7 were isolated (Table 1. entries 5-8). These results explain that the hydride source for reduction must be 12 generated from $\mathrm{C}-\mathrm{H}$ bond cleavage of 1 with $\mathrm{Rh}(\mathrm{I})$. Reactivity of intermediate 11 might be much higher than that of 7 towards acylrhodium(III) hydride, since 11 could not be isolated.

When 3,3-dimethyl-1-butyne (7e), a sterically hindered 1alkyne, was applied for this hydroacylation ($1: 5$ mole ratio of 1 and 7 e) in order to identify the generation of the intermediate 11, trans- α, β-unsaturated ketone 11e, 4e, 5 and 6 were obtained in a $69: 23: 7: 1$ ratio in 68% yield. ${ }^{12}$ (eq. 4) The reason for isolation of large amount of lle must

be that sterically hindered t-butyl group retards the metalhydride approach to the olefin in 11 e to reduce $i t$. Exclusive trans-olefin formation (11e: $J_{\mathrm{CH}=\mathrm{cH}}=16.0 \mathrm{~Hz}$) ensures the mechanism involving the intermediates 10 and 11 in eq. 3. From the above result, it is clear that branched alkyl ketone 8 might be also produced from the reduction of 15 via initial hydrometallation intermediate 14.

14

15

When 1 was reacted with an equimolar mixture of 1-pentene (16) and 1-hexyne (7 b) under the identical previous reaction condition to compare the reactivity of 1 -alkene with that of 1 -alkyne for hydroacylation, a mixture of $\mathbf{4 a}, \mathbf{4} \mathbf{b}$ and 5 was isolated in a $7: 85: 8$ ratio in 31% yield (eq. 4).

(eq. 5)
7 : 85 : 8
(31\% yield)

This result indicates that 1 -alkyne has much higher reactivity (about 12 times) than 1-alkene. The strong coordination power of 1-alkyne compared with that of 1 -alkene to the transition metals might be a major role for the greater reactivity of 1 -alkyne than that of 1 -alkene. ${ }^{13}$

In conclusion, hydroacylation of 1 -alkyne with 2 -(diphenylphosphino)benzaldehyde (1) with $\mathrm{Rh}(\mathrm{I})$ catalyst (3) afforded a mixture of 2-(diphenylphosphino)alkanophenone 4,5, and 6, identical products prepared from hydroacylation of 1-alkene with a trace amount of branched alkyl ketone 8. The reason for the formation of saturated alkyl ketone must be that hydroacylation of 1 -alkyne with aldehyde generates trans- α, β-unsaturated ketone and subsequent hydride reduction generated from $\mathrm{C}-\mathrm{H}$ bond cleavage by $\mathrm{Rh}(\mathrm{D})$ leads to saturated alkyl ketone. Clear reduction mechanism of α, β-unsaturated ketone by rhodium(II)hydride generated from C H bond cleavage of $\mathbf{1}$ is under study.
Acknowledgment. The present studies were supported by the Basic Science Research Institute Program, Ministry of Education, Project No. BSRI-95-3422 and Korea Science and Engineering Foundation (Grant 941-0300-004-2).

References

1. (a) Barnhart, R. W.; Wang, X.; Noheda, P.; Bergens, S. H.; Whelan, J.; Bosnich, B. J. Am. Chem. Soc. 1994, 116, 1821. (b) Barnhart, R. W.; Wang, X.; Noheda, P.; Bergens, S. H.; Whelan, J.; Bosnich, B. Tetrahedron 1994, 50, 4335. (c) Fairlie, D. P.; Bosnich, B. Organometallics 1988, 7, 936. (d) Fairlie, D. P.; Bosnich, B. Organometallics 1988, 7, 946. (e) James, B. R.; Young, C. G. J. Organomet. Chem. 1985, 285, 321.
2. (a) Kondo, T.; Akazome, M.; Tsuji, Y.; Watanabe, Y. J. Org. Chem. 1990, 55, 1286. (b) Marder, T. B.; Roe, D. C.; Milstein, D. Organometallics, 1988, 7, 1451. (c) Tsuji, Y.; Yoshii, S.; Ohsumi, T.; Kondo, T.; Watanabe, Y. J. Organomet. Chem. 1987, 331, 379. (d) Kondo, T.; Tsuji, Y.; Watanabe, Y. Tetrahedron Lett. 1987, 28, 6229. (e) Isnard, P.; Denise, B.; Sneeden, R. P. A. J. Organomet. Chem. 1982, 240, 285. (f) Vora, K. P.; Lochow, C. F.; Miller, R. G. J. Organomet. Chem. 1980, 192, 257.
3. (a) Tsuji, J.; Ohno, K. Tetrahedron Lett. 1965, 3969. (b) Colquhoun, H. M.; Thompson, D. J.; Twigg, M. V. Carbonylation: Direct Synthesis of Carbonyl Compounds; Plenum Press: New York, 1991, p 205.
4. (a) Jun, C.-H.; Han, J.-S.; Kim, S.-I. J. Korean Chem. Soc. 1994, 38, 833. (b) Jun, C.-H.; Han, J.-S.; Kang, J.-B.; Kim. S.-I. Bull. Korean Chem. Soc. 1994, 15, 204. (c) Suggs, J. W. J. Am. Chem. Soc. 1978, 100, 640.
5. (a) Jun, C.-H.; Han, J.-S.; Kang. J.-B.; Kim, S.-I. J. Organomet. Chem. 1994, 474, 183. (b) Jun, C.-H.; Kang, J.B.; Kim, J.Y. Tetrahedron Lett. 1993, 34, 6431. (c) Jun, C.-H.; Kang, J.-B.; Kim, J.-Y. J. Organomet. Chem. 1993, 458, 193. (d) Suggs, J. W. J. Am. Chem. Soc. 1979, 101, 489.
6. (a) Bianchini, C.; Meli, A.; Peruzzini, M.; Ramirez, J. A.; Vacca, A.; Vizza, F.; Zanobini, F. Organometallics 1989, 8, 337. (b) Ko, J.; Joo, W.-C.; Kong, Y. K. Bull. Korean Chem. Soc. 1986. 7, 338. (c) Landvatter, E. F.; Rauchfuss, T. B. Organometallics 1982, 1, 506.
7. Lee, H.; Jun, C.-H. Bull. Korean Chem. Soc. 1995, 16 ,
8.
9. Tsuda, T.; Kiyoi, T.; Saegusa, T. J. Org. Chem. 1990, $55,2554$.
10. Treatment of reagents carried out under argon in dry box. Some corresponding phosphine oxides were obtained during silica-gel column chromatography separation after the reaction.
11. Since hydroacylated branched alkyl ketone 8a was hardly isolated due to presence of a small amount (2%), detection was only possible by GC-MSD. Characteristic mass peak of $\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{OH})=\mathrm{CH}\left(\mathrm{CH}_{3}\right)^{+}$, 318, McLafferty rearranged fragment derived from the branched alkyl ketones such as $8 \mathrm{a}, \mathbf{8 b}, 8 \mathrm{c}$ and $\mathbf{8 d}$ has been shown. 8a: mass spectrum (assignment, relative intensity) $360\left(\mathrm{M}^{+}\right.$, 3.9), $345\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 16.2\right), 318\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{OH})=\mathrm{CH}\left(\mathrm{CH}_{3}\right)^{+}\right.$, 23.7), $317\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}, 100\right), 303\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{OH})=\mathrm{CH}^{+}\right.$, 33), 221 (6.5), 183 (15.5); 8b: mass spectrum (assignment, relative intensity) $374\left(\mathrm{M}^{+}, 6.1\right), 359\left(\mathrm{M}^{+} \cdot \mathrm{CH}_{3}, 10.9\right), 318$ $\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{OH})=\mathrm{CH}\left(\mathrm{CH}_{3}\right)^{+}, 28.1\right), 317\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 100\right)$, $303\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{OH})=\mathrm{CH}^{+}, 6.6\right) .221$ (6.7), 183 (11.8); 8c: mass spectrum (assignment, relative intensity) 403 $\left(\mathrm{MH}^{+}, 4.4\right), 402\left(\mathrm{M}^{+}, 4.1\right), 388\left(\mathrm{MH}^{+}-\mathrm{CH}_{3}, 16.4\right), 387$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 13.1\right), 318\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{OH})=\mathrm{CH}\left(\mathrm{CH}_{3}\right)^{+}, 27.9\right)$, $317\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{13}, 100\right), 303\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{OH})=\mathrm{CH}^{+}, 5.9\right)$, 201 (7.3), 183 (12.5); 8d: mass spectrum (assignment, relative intensity) $395\left(\mathrm{MH}^{+}, 22.8\right), 394\left(\mathrm{M}^{+}, 25.2\right), 380$ $\left(\mathrm{MH}^{+} \cdot \mathrm{CH}_{3}, 100\right), 379\left(\mathrm{M}^{+} \cdot \mathrm{CH}_{3}, 89.3\right), 318\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{C}\right.$ $\left.(\mathrm{OH})=\mathrm{CH}\left(\mathrm{CH}_{3}\right)^{+}, 19.9\right)$, $303\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{OH})=\mathrm{CH}^{+}, 13\right.$. 0), 207 (26.1), 183 (38.7). 8e: mass spectrum (assignment, relative intensity) $374\left(\mathrm{M}^{+}, 17.7\right), 359\left(\mathrm{M}^{+}-\mathrm{CH}_{3 .} 66.3\right)$, $318\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{OH})=\mathrm{CH}\left(\mathrm{CH}_{3}\right)^{+}, 16.7\right), 317\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right.$, 100), $303\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{OH})=\mathrm{CH}^{+}, 46.2\right), 201(32.5), 183$ (31.6).
12. Spectroscopic analysis of 4c. 4c: ${ }^{1} \mathrm{H}$ NMR (100 MHz , CDCl_{3}) δ (ppm) $7.85-7.27\left(\mathrm{~m}, 14 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{5} \& \mathrm{C}_{6} \mathrm{H}_{4}\right), 2.72$ $\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \alpha-\mathrm{CH}_{2}\right.$ to CO$), 1.25-0.85(\mathrm{~m}, 15 \mathrm{H}, \mathrm{n}-$ $\mathrm{C}_{7} \mathrm{H}_{\mathrm{ts}}$); $\mathbf{l R}$ spectrum (neat) 3059, 2921, 2855, 1677 (CO), $1585,1440,1295,1203,1124,999,933,755,597 \mathrm{~cm}^{-1}$; mass spectrum (assignment, relative intensity) 403 $\left(\mathrm{MH}^{+}, 6.3\right), 373\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}, 2.3\right), 359\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}, 4.3\right), 317$ $\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{13}, 3.0\right), 304\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{OH})=\mathrm{CH}_{2}{ }^{+}, 26.5\right), 303$ $\left(\mathrm{M}^{+} . \mathrm{C}_{5} \mathrm{H}_{11}, 100\right), 225$ (12.9), 183 (9.3).
13. The ratio was determined by GC and a trace amount ($<0.5 \%$) of branched alkyl ketone 8 e was obtained. 11e was partially oxidized to give phosphine oxide form of 11e during chromatographic separation. Spectroscopic analysis of 4 e and 11 e . 4e: ' H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.89-7.03\left(\mathrm{~m}, 14 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{5} \& \mathrm{C}_{6} \mathrm{H}_{4}\right), 2.90(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}, \alpha-\mathrm{CH}_{2}$ to CO), $1.55\left(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{CH}_{2}\right.$ to CO), 0.89 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 209.97 (CO), 138.22-128.15 (Cs of three phenyl group), 37.83 ($\beta-\mathrm{C}$ to CO), 35.84 ($\alpha-\mathrm{C}$ to CO), 31.26 (γ C to CO), 29.13 (3Cs of $3 \mathrm{CH}_{3}$); IR spectrum (neat) 3059 , 2967, 2875, 1703 (CO), 1591, 1440, 1367, 1262, 1203, 1124, 933, $749,696 \mathrm{~cm}^{-1}$; mass spectrum (assignment, relative intensity) $375\left(\mathrm{MH}^{+}, 2.2\right), 374\left(\mathrm{M}^{+}, 8.7\right), 359\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right.$, 6.3), $317\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 3.7\right), 304\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{OH})=\mathrm{CH}_{2}{ }^{+}, 21\right.$. 3), $303\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{31}, 100\right), 225$ (13.9), 183 (18.2), 11e: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.70-7.27\left(\mathrm{~m}, 14 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{5}\right.$ $\left.\& \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.85(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{CH}$ to CO$), 6.61(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-\mathrm{CH}$ to CO$), 1.03\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$; mass
spectrum (assignment, relative intensity) $373\left(\mathrm{MH}^{+}, 7.4\right)$, $372\left(\mathrm{M}^{+}, 28.3\right), 358\left(\mathrm{MH}^{+}-\mathrm{CH}_{3}, 32.4\right), 357\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 100\right)$, $343\left(\mathrm{MH}^{-}-2 \mathrm{CH}_{3}, 12.9\right), 315\left(\mathrm{M}^{+}-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}, 38.2\right), 303(16.3)$, $295\left(\mathrm{M}^{+}-\mathrm{Ph}, 5.5\right), 221$ (15.0), 201 (26.5), 183 (52.3). Oxide form of 1le: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.70-$ $7.27\left(\mathrm{~m}, 14 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{5} \& \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.46(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\beta-\mathrm{CH}$ to CO), $6.17(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-\mathrm{CH}$ to CO$), 1.04$ ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3)} \delta(\mathrm{ppm}) 195.44$ (CO), 134.87-123.36 (Cs of three phenyl group), 33.99 (γ C to CO), $28.39\left(3 \mathrm{Cs}\right.$ of $\left.3 \mathrm{CH}_{3}\right)$; IR spectrum (neat) 3059 , 2967, 2875, 1966, 1664 (CO), 1571, 1440, 1368, 1302, 1124, $1032,861,755,703 \mathrm{~cm}^{-1}$; mass spectrum (assignment, relative intensity) $389\left(\mathrm{MH}^{+}, 8.1\right), 388\left(\mathrm{M}^{+}, 17.8\right), 373$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 17.4\right), 332\left(\mathrm{MH}^{+}-\mathrm{C}\left(\mathrm{CH}_{3}\right) 3,16.9\right), 331\left(\mathrm{M}^{+}-\mathrm{C}\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{3}, 53.5\right), 319(11.8), 311\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5}, 21.4\right), 305\left(\mathrm{Ph}_{2} \mathrm{P}\right.$ $\left.(=\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}, 50.4\right), 303$ (27.7), 295 (14.2), 289 (19.0), $277\left(\mathrm{Ph}_{2} \mathrm{P}(=\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}{ }^{+}, 36.0\right) 227$ (28.2), 201 (20.0), 183 (32.8), 152 (50.0), 77 (100); HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{P}$ $\left(\mathrm{M}^{+}\right): 388.1594$. Found: 388.1569.
14. Lukehart, C.M. Fundamental Transition Metal Organometallic Chemistry; Brooks/Cole Pub. Co.; Monterey, 1985, p 154.

An Efficient and Enantioselective Synthesis of A Chiral Primary Amine Il $^{\mathbf{1}}$

Kwang Yul Moon, Nakyen Choy, Chihyo Park, Young Chan Son, Won Hee Jung, Ho-il Choi, Chang Sun Lee, Chung Ryeol Kim, Sung Chun Kim*, and Heungsik Yoon*

Biotech Research, LG Chem. Research Park, P.O. Box 61 Yu Sung, Science Town, Taejon 305-380, Korea

Received July 25, 1995

Chiral amines have received considerable attention because of their potential as a key intermediate for synthetic drugs such as 1 , which was developed in our lab as a potent and irreversible HIV-1 protease inhibitor. ${ }^{2}$
In our continuing effort to optimize C-terminal of this novel series of inactivators, it was necessary to develop an efficient method for the preparation of optically active primary amines such as 5 . We, herein, report an efficient and enan-

Figure 1. Structure of Irreversible HIV-1 Protease Inactivator.

Scheme 1. Reagents: i) $\mathrm{NaBH}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4} .96 \%$; ii) $\mathrm{CbzCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ 95%; iii) (COCl_{2}, DMSO, ${ }^{\left(\mathrm{Pr}_{2} \mathrm{NEt}, 98 \% \text {; iv) ethyltriphenylphos- }\right.}$ phonium bromide, KHMDS, toluene, $-20^{\circ} \mathrm{C}, 92 \%$; v) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$, $\mathbf{M e O H}, 99 \%$.

Scheme 2. Reagents: i) $\mathrm{PhCH}_{2} \mathrm{MgCl}_{1}$ THF, reflux; ii) NaBH_{4}, THF/MeOH; iii) isobutyl chloroformate. N -methylmorpholine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$.
tioselective synthesis of a chiral primary amine using a naturally occurring amino acid as the starting material.

As shown in Scheme 1, the target amine 5 was synthesized from L-phenylalanine. Cbz-protected phenylalaninol 2 was readily obtained from L -phenylalanine by $\mathrm{NaBH}_{4}-\mathrm{H}_{2} \mathrm{SO}_{4}$ reduction ${ }^{3}$ and subsequent Cbz -protection. Oxidation of 2 was performed under the modified condition ${ }^{4}$ of Moffat-Swern oxidation at $-20{ }^{\circ} \mathrm{C}$. Olefination of 3 was effected by use of potassium bis(trimethylsilyl)amide in toluene at $-20^{\circ} \mathrm{C}$ to give $\mathbf{4}$ without racemization. As a final step, hydrogenation with $10 \% \mathrm{Pd} / \mathrm{C}$ catalyst afforded the target compound 5 . The yields of all the steps in Scheme 1 were higher than 90% (81% overall yield).

The racemic amine was prepared from butyronitrile by the addition of benzylmagnesium chloride and the subsequent NaBH_{4} reduction of the ketemine intermediate. ${ }^{1}$ The coupling of the resulting racemic amine with 6 gave two diastereomers 7 and 8 which can be easily separated ${ }^{5}$ on silica gel column chromatography as depicted in Scheme 2.

The coupling of amine 5 from Scheme 1 with 6 gave exclusively one diastereomer 7 , which proved that the reaction sequence shown in Scheme 1 was an efficient and enantioselective method for the preparation of optically active amine 5.

Various alkyltriphenylphosphonium salts were subjected to the same method in Scheme 1 to provide optically active amines as follows:

Studies are in progress for the extension of this method to prepare various optically active amines by the combination of L - or D-amino acids and alkyltriphenylphosphonium salts.

