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A topological theory is introduced to extend Tsenoglou's theory to polymer blends having temporary and permanent 
networks composed of multicomponent polymers which have miscible and flexible chains. The topological theory may 
estimate the values of free elastic energy, the molecular weight between entanglements, and the equilibrium shear 
moduli, and it may establish more correctly the topological relations among these physical quantities. Through such 
introduction of the topological theory, there can be topologically analyzed the mixing law for the rubbery plateau 
modulus of a fluid polymer blend, and there can be considered the topological relationship to the equilibrium modulus 
of an interpenetrating polymer network containing trapped entanglements and dangling segments. The theoretically 
predictive values are compared and show good agreement with the experimental dat쵸 for several miscible polymer 
blends.

Introduction

Recently, topological theories have played a great role in 
studing the elasticity of polymers. The theories which have 
systematically dealt with rubber elasticity so far are the phan- 
tum network theories1^6 headed by Flory and others and 
the topological network theories7'"12 headed by Iwata and 
others. Phantom network theories have retrograded in recent 
years because of the fact that they have dealt with the ener­
gies of rubber elasticity as only functions of the end-to-end 
distance between chains, and so they have not considered 
the effect of interaction between chains by entanglement. 
On the other hand, recently developed topological network 
theories can explain very well the effect of interaction bet­
ween chains by entanglement. Iwata has theoretically explai­
ned the various phenomena of rubber elasticity by applying 
topological theories to a polymer system which consists of 
only a single kind of polymers.10~12 The models which he 
has offered are mainly confined to the SCL (simple cubic 
lattice) models,11'12 and he did not obtain nor offer detailed 
transformation matrices and related topological distribution 
functions about the THL (tetrahedral lattice) model. We offer 
detailed transformation matrices about the THL model and 
related topological distribution functions by extending topo­
logical theories of Iwata of the THL model (called the BCL 
model earlier by the previous work13), and we analyze the 
Tsenoglou's theory14 of polymer blends in view of topological 
approach. And the question of how free energy of polymer 
blends, plateau moduli, and molecular weight are bound up 
with interaction between chains of polymer systems has be은口 

systematically examined in detail. Here, a topological theory 
for polymer blends has been evolved based upon the Tseno- 
glou's theory under the assumption that all the junction poi­
nts of polymer blends forms the THL model for some 
average time interval.

In the present work, the survey of the THL mod이 is con­
cisely described, and the corresponding equations which are 
related to the THL model are topologically evolved. Then, 
through the comparison of these topological results with 
those of the Tsenoglou's,诃 the corresponding physical quan­

tities of the Tsenoglou's theory are analyzed in view of the 
topological theory by consideration of excluded-volume effe­
cts in the given polymer systems. Finally, the theoretically 
predictive values are compared with the experimental data.

THL Model

This tetrahedral lattice (THL) model has been known as 
the body-centered cubic lattice (BCL) model.13 The new name 
emphasizes the actual structure of the model.

The distribution functions and transformation matrices 
about the THL model had already been offered originally 
in the previous work.13 In the present work, topological theo­
ries of polymer blends are evolved by introducing a part 
of the previous work. The results carried out in this work 
are such things as the work which applies the distribution 
functions obtained from the THL model to the Tsenoglou's 
statistical theory and as the work which explains the pre­
vious experimental results reasonably by obtaining the values 
of free energy, distribution functions, molecular weight, and 
plateau moduli. From now on, the structure of the THL mo­
del and the process of deriving transformation matrices and 
projection matrices of the THL model which were obtained 
from the previous work will be described in this section.

The THL model is the one in which the junction points 
of polymer networks are located at the points of a body-cen­
tered cubic lattice, and in which the arrangement of four 
strands projected from each junction point always takes the 
tetrahedral structure. The picture of the three dimensional 
structure of the THL model is given in Figure 1, where 
solid lines denote strands and small circles represent junc­
tion points. Here a word strand means a polymer chain 
which joins two neighboring junction points. A word junction 
point means the jointing part of strands in the networks.

In the THL model, it is assumed that the solute chain 
collections are regularly arranged at the lattice points, in 
turn with the solvent chain collections. For example, in Fig­
ure 1, A and C chain collections are composed of the sets 
of junction points of polymer solute molecules, and B and 
D chain collections consist of the sets of junction points of
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Figure 1. The three dimensional structure of the THL (tetrahe­
dral lattice) model, where solid lines denote strands and small 
circles represent junction points. A and C chain collections are 
composed of the sets of junction points of polymer solute mole­
cules, and B and D chain collections consist of the sets of junc­
tion points of polymer solvent molecules.

Figure 2. The characteristic combination modes of strands 
around the general junction points /紀(a) and (b). This picture 
shows the spatial orientations of strands defined on the basis 
of a Jg in addition to the coordinates of junction points.

polymer solvent molecules. In each chain collection, junction 
points are classified into two categories according to the me­
thods of their combination with neighboring strands. One 
is the set of junction points corresponding to the apexes 
of lattices, and the other to the body centers of lattices.

Let 丿纣's be junction points of the former and 扁's the latter. 
For either 丿例's or 扁's, two different spatial orientations per 
junction point can be allocated in the way of combination 
with four neighboring strands around a given junction point. 
The effects of these two arrangements, however, are essen­
tially identical in view of contribution to the free energy 
of the system, so it dosenft matter which of them is chosen 
in going on discussing. In usual, it is convenient to select 
a Jev in the central part of the system as an origin of the 
coordinates.

Conveniently, if the length of an edge of lattices is taken 
as two without unit, the coordinates of every junction point 
can be readily described as the set of three components 
having only values of integers. The Figure 2 represent the 
characteristic combination modes of strands around the ge­
neral junction points Jevrs and and shows the spatial orie­
ntations of strands defined on the basis of a 扁 in addition 

to the coordinates of junction points.
Independently of 丿却 or Jod, if I is taken as a position vector, 

the equations give its components and their areas as follows;

1 = 0 j, k)
i— —I, 丿一1, I
j=-J, 一J+l,…，J-l, J
k— —K+ !,•••, K~ 1, K (1)

where I, J, and K all take the values of positive integers. 
It is necessary to note that the components of every Jev all 
have values of even integers, and that those of every R 
have only values of odd integers. The spatial orientations 
of all the strands in the system are deduced to only four, 
as plotted in Figure 2(b). Conveniently, let a； or。订上
Y, Z and W) be a symbol which represents a strand. Then 
the four spatial orientations of strands in the system are 
defined as

X泓=strand from to )+1,为+ 1)
strand from t。/山'+1,，一 1, & + 1)
strand from Jev(ij,k) ;+l, A-l)

円弘=strand from J面前 to /曲0—1, jT, k~l) (2)

The picture for these orientations is given in Figure 2(b). 
These are reduced to only four unit loops, that is, the twelve 
loops can be represented by the linear combination of four 
unit loops though the number of loops formed around a J知 
is all tw이ve. Similarly to the case of strands, let Ui or U讹 
(U=g and 6) be the symbol denoting a loop. Then 
the four unit loops, which are all hexagonal types consisting 
of six strands, around a •/纣(zj同 are expressed by

S琳一Xij* + Yij+2k + 2 —Xi + 2旗 + I仍'+2传+ 2 —匕形

n 沸=y网—Xf + a」既+ Z讦耳_处—Yi + ^k-2~^Xi + ^k-2~^ijk
Gk —匕。-2沌-2 —Zj 一 2丧 - 2 —Z沸
8讴=*及一乙_2依+2+吼一孕+2一X—寄—以+乙—寄―象—律沔 (3)

where the minus symbols attached to terms of the right-hand 
sides denote the inverse of orientation of the given strands.

The letters X, Y, Z, and W which are denoted along loops 
represent the orientation of strands defined by Eq. (2). In 
usual, it is convenient to discuss the physical properties of 
the system by separating and 爲s respectively in descri­
bing junction points of lattices. The formation mode of twelve 
hexagonal loops around any junction point is exactly identical 
for either a J例 or a R because the distinction of 扁's and 
丿Js derives only from the description of the coordinates.

The information obtained above can also be applied to 
the system of only 扇's after the consideration of the system 
composed of only J厲.First, the system composed of only 

will be considered. Then it can readily be shown that 
the arranging structure of lattice in the system is that of 
the tetrahedral lattice.

Let i be the coordinate system of junction points, including 
all 丿例's and 扇's, along the x-axis, then we have

i— —I, /+1,…，/—I, 1
I=2Q
f=-2Q, —2Q+2,…，2Q—2, 2Q
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q드订2=—Q, 一Q+l,…,Q-l, Q (4) <=Cq ® G? ® <s, 8 = & (g) (g) &. (10)

where the quantities I and Q are positive integers, and in 
particular, / is a positive even integer. Similarly to the x- 
axis system, the following relationships along the axes y and 
z are given by

J=2R
rw72
KWS
s=kf/2 ⑸

where J and r correspond to the >-axis, and K and s corres­
pond to the z-axis. Now if Eq. (3) is expressed by the newly 
reduced coordinate system (q, r, s), a serie옹 of equations 
can newly be obtained as the following;

+ ls+l + K"+Ls+1 ―■X^+irs+i+PV% + irs+i —匕rs

— y搭—Xq +、_ is + Zq + ir— 15 —匕 + Its — 1 +Xq+ Vs- 1 ~~Zg

qrs 一匕一bs— 1 + Zq—也—1 —"七卩■十 Is _ 1 + ^qr+\s- 1 ^qrs

—Xqrs — Zg—也+ 1 + 14% - lr— Is —Xq一 lr~ Is +Zq- lr- 1$ — (6) 

where these equations are not arithmetic expressions, but 
symbolic ones, which will be transformed into arithmetic ex­
pressions later on. Especially, Eq. (6) is indispensable expre­
ssions in calculating the projection m간rix I、* of the THL 
model. The unit loops around any J(넎 take the same linking 
form of strands as that of given in Eq. (5) because all 
the loops in the system are formed by exactly alternate linki­
ngs of Jm's and 丿Js.

Let J's be junction points, and o's and Us represent stra­
nds and loops, respectively. And letting 6 and Ul be all 
(2L + l)-dimensional row vectors, row vectors of strands and 
loops are given by

Xq 드 (XqXq 一• 1 …X — Q + X - Q)

Xr = _ 1 …X—r + 1X 一 r)

&=(&R如一 1…8一R+18-R)

In Eq. (9), the symbol (§) represents a direct product between 
matrices. Let UL be a (2L + l)-dimensional unit matrix given by

1
1

1
Ul=

1
1 (11)

and let 以 be a (2L+ l)-dimensional matrix defined by

-1 1
-1 1 

-1 1
Dl— …

-1 1
- -1 1 (12)

where all the blank parts in square brackets have the values 
of zeros, and such a usage will keep being used in the expre­
ssions of all the matrices appearing hereafter.

Let a, b, and c be matrices given by

(Z = Uq (3)Dr (g) Ds 
b 三 Dq K Ur 区)Ds 
c^Dq ® Dr (为 Us (13)

where a, b, and c are al [(2Q+1)(2R+1)(2S+1)X(2Q+1) 
(2/? +1)(25 + l)]-dimensional matrices.

By use of Eqs. (11) to (13), Eq. (6) can be transformed 
from symbolic expressions into arithmetic ones, and then 
the results lead to

代 n C 6)=(X y ZW)

(14)

8s~(8$8§ r,48-s+i8-s) (7) or

Letand be defined as the form of triple products, 
that is,

。亦一bgQQs
UqKUqU’Us (8)

where though single terms of the right-hand sides have no 
physical meanings, triple product terms, each of which is 
composed of three single terms, have the same physical 
meanings as terms given in the left-hand sides. From Eqs. 
(7) and (8), o and U take the form of row vectors expressed 
by

o=(X Y Z W)
u=(m C 8) ⑼

where B is defined by

U=o B (15)

(16)

where the X, Y, Z…，T|，

X=Xq ® Xr ® Xs, 
Z=Zq (g) Zr (g) Zs, 

(X)&(X)&,

& and 8 are expressed by

Y=Yq
W=WQ

n = T)Q

rsw

ns

®
 ®
 
®

V
"

必
m

®
®
®

From Eq. (14) or (15), it is 아lown that the matrix B, which 
has a [4(2Q + 1)(2J? +1)(25 +1) X 4(2Q + 1)(2R + 1)(2S +1)] 
dimension, is a transformation matrix transforming loops into 
a linear combination of strands.

Let C be defined by

C三B (g) B. (17)

From the character of matrices?215

(18)

The detailed contents for calculating are shown in the 
previous works.11~13 A number of elements of B* for Q—
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(6 o')

Table 1. The calculated values of the projection matrix B® on the THL model. These values are used in calculating the elastic 
energy of the given polymer system by using Eqs. (13) to (16). These are composed of the calculated values on the lattice system 
having the size that Q=R=S=20

iq, L s)
(X, X) (X, Y) (X, Z) K W) (K Z) (K ") 0, W)

(0, 0, 0) -0.2713 -0.2713 0.2145 0.2043 -0.2614 0.2706 0.7312
(0, 0, 1) 0.5421 0.2374 -0.2914 0.5421 0.1043 —0.0498 0.5420
(0, 0, 2) 0.0971 0.0684 -0.0899 -0.0878 0.0432 0.0437 -0.0303
(0, 1, 14) 0.0943 -0.0876 0.0544 -0.0339 0.0291 -0.3327 0.0344
(0, 1, 19) -0.0536 0.0440 0.0328 -0.0547 -0.0327 0.0294 0.0171
(0, 1, 20) -0.0429 -0.0436 0.0872 0.0744 0.0443 0.0112 0.0096
(1, 0, 0) 0.3811 0.0584 0.3270 0.0429 -0.0374 0.0098 -0.0326
(1, 0, 1) 0.0862 -0.0322 -0.0341 0.0878 0.0099 -0.0081 0.0220
(1, 0, 2) 0.0666 0.0273 -0.0287 0.0534 0.0723 -0.0814 — 0.0344
(2, 20, 0) 0.0098 0.0051 0.0096 -0.0523 0.0036 0.0058 0.0023
(2, 20, 1) -0.0413 -0.0948 0.0390 -0.0054 0.0043 0.0394 0.0081
(2, 20, 2) 0.1143 0.1032 0.0946 0.0222 -0.0062 -0.0073 -0.0039
(10, 10, 10) 0.0093 0.0088 -0.0077 0.0049 0.0057 -0.0033 0.0091
(20, 19, 18) 0.0042 0.0037 0.0032 -0.0032 0.0033 0.0032 0.0043
(20, 19, 19) 0.0919 0.0927 -0.0934 -0.0217 0.0324 -0.0994 0.0059
(20, 19, 20) 0.1114 -0.0981 0.0226 0.0243 -0.0814 0.0343 0.0274
(20, 20, 18) —0.3689 0.1123 -0.0094 0.2023 -0.0913 0.0814 0.0625
(20, 20, 19) —0.0824 0.0243 0.0048 0.0382 0.0375 0.0586 -0.0417
(20, 20, 20) 0.0332 0.2716 0.3571 -0.1982 0.5044 0.5273 —0.0394

R=S=20 are given in Table 1. In Table 1, since the strand 
pairs CE X), (K Y)t (Z Z), and 旺 W) all have the same 
values, they can be represented only as the (K X). On the 
other hand, (X Y) has the same value as (K X)； (K Z) as 
(Z X)； (X 昭 as (阳 X); •••; and (Z W) as 俱 Z).

In the result, totally seven of independent paris (o, o')'s 
for any junction point are obtained. In order to obtain r# 
by using the first equation of Eq. (A7) of appendices, we 
have only to find C#. Since any element of C# is given 
by direct products of two of 8#'s, if r* [(하商 u'g) (b“矿八”, 

is set to be an element of the matrix r# for the 
pairs (bg a：行)and (矿矿，，矿，矿'广产$ ”)，the following equation 
can be obtained;

「气(％,矿*)(叽义”，矿'心”矿归

—^*(Oooo,。‘w-Wfs'-s I)出# (oJoo, b"'I 旷_的宀3”-矿|)

(19)

from which all the other elements of I거* are obtained. Having 
calculated the projection matrix r# of the THL model, F2 
can be obtained from Eqs. (19) and (A16) of appendices.

The important skeleton of topological theories is transfor­
mation matrices, distribution functions, and free energy 
about polymer systems. The concept and the deriving pro­
cess of all these items are briefly given in appendices. In 
topological theories, the total free energy of polymer netwo­
rks consists of four energy terms (see Eq. (A3) of appendi­
ces). The topological free energy, F이碎 (which is free energy 
arising from the topological interaction among the strands), 
can be obtained from the values of contact distribution func­
tions gp and 如).The calculation of projection matrices 
of the THL model must be carried out before obtaining the 

strand fluctuation energy, F2 (which is free energy from the 
fluctuation of strands). Therefore, the transformation matrix 
(from which a projection m가rix can be obtained) of Eq. (16) 
had been offered in the previous work.13 In the present work, 
the calculation of free energy of several polymer blends16,20'23 
has been carried out by using the given matrices. Thus, the 
total free energy of the network can completely be computed 
through the process discussed up to now.

Topological Analysis of the Tsenoglou^ 
Theory

The Tsenoglou's theory14 is mainly referred to entangle­
ment statistics in miscible polymer systems. It is assumed 
that the linear flexible polymers of sufficiently large molecu­
lar weight form a temporary network of entangled chains 
in dense solutions or melts. The molecular weight between 
entanglements, Met increases with the molecular rigidity of 
the polymer and with solvent concentration. In general, it 
is expected that entanglements between identical chains lie 
further apart in a blend than in a pure system, and entangle­
ments associating heterogeneous polymers are formed in the 
areas between homopolymer junctions.

For a blend composed of m different polymer species, let 
Mit Vit and p, 0=1,2,…，師)be the molecular weight, the vo­
lume fraction, and the density of the fth component, respecti­
vely. Let Meio be the molecular weight between entangleme­
nts, and let M be the number of primitive steps ", subseg­
ments defined by two consecutive chain junctions) per chain, 
then the following relationship is obtained by
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=MJM兩 (20)

Let ij be defined as a segment which is lying on an i 
polymer chain and confined by two successive entanglements 
with j polymers, Ng as the number of such segments per 
i chain, and as its average molecular weight.

When the end effects are neglected W>1), 아此 total num­
ber of steps per blended i chain (m() is given by

N、=支 N,,= » £ (M/Mv) (21)
j=l )=1 j=l

It is assumed that the fraction of entanglements along an 
i chain caused by associations with j chains is equal to the 
fractional participation of j steps in the total step population 
in the blend if perfect randomness prevails in the formation 
of interchain couplings. The number density of steps of any 
kind is given by

s= £ V, N (22)
;=1

where v； represents the number of j chains per unit volume 
of the blend, and its detailed form is given by

시j=p代Na/M] (23)

where Na is the Avogadro^ number.
In usual, the entanglement probability between dissimilar 

chains is proportional to the geometric average of those bet­
ween similar chains. Unless compatible neighbors affect the 
ability of similar polymers to entangle, the frequency of asso­
ciations between chains of the same species decreases with 
the polymer volume fraction. Thus, the molecular weight be­
tween two successive homopolymer entanglements along a 
third chain can be computed as a function of the blend com­
position and the corresponding properties of the pure poly­
meric precursors;

虹=쁛 =十(■쓰삆3T" (24)

And also the total number of primitive steps along an i 
chain, Ni, is given by

"簣削(證广 (25)

It is assumed that the above r이ationship is valid even 
in the case that some of the blend components are oligomers 
or regular solvents. The inability of the small molecules to 
form entanglements can be explained by netting their value 
of M血 to approach to infinity.

By the way, the polymer mixing affects the ability of blen­
ded polymers to entangle.16 Describing this phenomenon 
quantitatively, the following equation is given by

赛=씂="】+2广씂广 (26)

*

The positive or negative exponent in Eq. (26) represents 
attractive or repulsive interactions between dissimilar spe­
cies, and such a usage will keep being used hereafter. The 
parameter represents the relative strength of these interac­
tions. Its positive value corresponds to the fractional change 

(decrease or increase) of the distance between two succes­
sive homopolymer entanglements along an i chain due to 
the intermediate presence of a single entanglement with a 
dissimilar (j) species.

Usually, it is expected that the change of M is proportional 
to that of Nij and that the ratio Nij/Nn remains relatively 
insensitive to u variations. Thus, from Eqs. (24) to (26), 
the following equation can be obtained by

A细..=N〜y I + $ *2 卬 Mei。)勺曰
Metl Nt0 一匕卩十冬K2 Pl M功丿J

由

(27)

Combination of Eq. (27) with Eqs. (20) and (23) leads to

(28a)丄 =쓰〔 V/2l±l
M商 Mi Mno L1 \ )j

(28b)

For the topological THL model, let the parameter G be 
represented by

濟 (29)

where a is a normalized constant,乎 is the solute-solvent 
distribution function [see Eq. (A8)], and P is the chain con­
tact distribution function considering excluded-volume effects 
in the given blend. Introduction of Eq. (29) enables 나le Tse- 
noglou's theory to be transformed into a topological theory, 
and Eq. (29) is first and originally offered in the present 
work. Also an offer of Eq. (29) is one of the most important 
parts of the work which has been carried out in this paper. 
The detailed form of P is respectively given by

» = S(3v'2/2廿“ u vl)加户2 , exp{—303—为2〃知)/密}

+ (1 —^){9v，2/4n4 ~v ur v1 Au &시如|}盟

X exp{—3(炳一为所「規2)抨} (30)

where g is the distribution probability parameter, which has 
the variation values les도 than one and more than zero, and 
all the physical meanings of the others are represented by 
the previous references.11*'13

Combination of Eq. (29) with Eqs. (28a) and (28b) leads 
to

M，= 管（1+附｛书저 （31a） 

的=专 ｛쓰靜 T5 驟崙 广｝

h + g（书^ 广｝]“ （3此）

Multicomponent Polymer Systems. Now consider 
network elasticity in multicomponent polymer systems. Let 
Gn° be the viscoelastic parameter representing a measure 
of the material rigidity of entangled polymer solutions and 
limits. For a pure polymeric fluid i, let Gn? be the pseudo 
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equilibrium shear modulus of the temporary network formed 
by the free chains. Then its magnitude is inversely propor­
tional to the mesh size of this network such as

G°Ni~kBTviNi RT pt/M赤 (32)

where T is the temperature,如 is the Boltzmann constant, 
and R is the ideal gas constant. The plateau modulus of 
a multicomponent macromolecular blend G°nb can be obtai­
ned by

G°nb =kBT £ V,M=^7、( » (v,N,沪《 (33)

Considering the effects of thermodynamic interactions, the 
rubbery plateau modulus of a binary miscible is given by
(G%b°火2= K(G°M)U2(l + c迎이%(G%2)U2/V1(G°M)U아)± U2

+ V2(G%2)U2(1 + 끼皿 (G%1)U2/U2(G%2)U2})± 1/2

(34)

where the positive or negative exponent represents mutually 
attractive or repulsive components. The result of Eq. (34) 
can be normalized by 

(G%b)U2
(G°m)U2—(G°诚 U2 (35)

where all the values with the variation of the blend composi­
tion are subjected to a unified plot.

Interpenetrating Polymer Networks (IPN). It is now 
the time to consider equilibrium modulus of interpenetrating 
polymer networks. Unless the presence of permanent junc­
tions affects the entanglement density, such analysis as the 
case of free polymer chains in a fluid can also be applied 
to an interpenetrating polymer network (abbreviated to IPN 
hereafter) composed of m interlocked rubber networks. In 
the case of the ith component of this system (£=1,2,…，m), 
let Mj be the average molecular weight of a crosslinked st­
rand, let piVi be the concentration, and let M成 be the mole­
cular weight between entanglements without any other com­
ponent (峪=1).

A strand in the /th network consists of + l steps, and 
Ni steps are formed by entanglements trapped during the 
crosslinking process. In usual, one step is due to the crossli­
nks at the end of the chain.

Since the mobility of the free end is confined, all the steps 
which are lying on or terminated by a tethered segment 
are elastically ineffective.17'18

Letting 1 —4>, be the fraction of the dangling ends in the 
ith network, the number density of the elastically active i 
strands, ve, is given as follows;

시려 = <tw (36)

Though each of these strands is still composed of N〔+l 
steps, only 7礼 + 1 of them can store energy under deforma­
tion. In order to calculate this number, and to account for 
the network weakening due to the chain defects, the follo­
wing relationship may be used by

I、嘰財(就-广 (37)

For a randomly crosslinked network, the following relation 

is given as shown first by Flory;17

If =1/G (38)

where G is the number of tetrafunctional crosslinks per pri­
mary i chain.

Applying the statistical theory of rubber elasticity into the 
IPN systems, the equilibrium shear modulus Ge is proportio­
nal to the concentration of elastically active segments ve;

Ge=AkBTve (39)

where the quantity A, which is close to unity, is a factor 
which explains the effects of the junction mobility and the 
reduction of the chain dimensions caused by crosslinking. 
Besides strands formed by crosslinking are the factors of 
material rigidity, the subsegments (steps) formed by entang­
lements trapped between permanent junctions can also store 
elastic energy, and then contribute to ve such as;

A ve= » (40)
i=i

For an athermal system formed by m IPN's which contain 
dangling branches, combination of Eqs. (39) and (40) with 
Eqs. (36), (37), and (23) leads to

읆 =，若 w,(贵)+[ 客 <牌(洗)T

or
G= J 0,V.<?a + [客 MG。"" (41)

where G尸 RTp/M is regarded as the measure of the cross­
link contribution to the material rigidity.

For the case where m = l and % = 1, Eq. (41) reduces to 
Ferry's equation for the modulus of a one-component net­
work with trapped entanglements;18

Gd=RT (Np.d/M+WAf^) (42)

Using the same method and considering the effects of the­
rmodynamic interactions, the modulus of a binary IPN is 
given by

G=(SKG” + e2 卩2&)+SM(Gi2)U2+e肌(G21)U2)2 (43a)

where

(爲=GFl+戒끠® 玖G%沪抻矿俗%沪2})土1 (43b)

It is necessary to recall that the positive or negative expo­
nent in Eq. (43b) represents attractive or repulsive interac­
tions between dissimilar species. For a binary IPN where 
the first participating network is isotropically swollen by the 
second, the form of Eq. (43a) is reformed into
伝=01卩/為+妫朽Q + q負任3企2 +瞠时621+(卩「/3卩2 +

叩欲>1姒0/?21) (44)

Accommodating the network strengthening effects of trap­
ped entanglements, Eq. (44) results in an extension of an 
earlier result reported by Sperling.19

Results and Discussion

The results of the Tsenoglou^ theory are analyzed in view
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Figure 3. The calculated values of elastic free energy obtained 
by applying Eqs. (A13) to (A16) to the given polymer blends 
(eg, PPO/PS, MPC/PS, PMMA/PSAN, PEO/PMMA, and PVF/ 
PMMA). The experimental data points (which are represented 
as polygons and circles) converted from the Refs.16,20~23 are plot­
ted in this picture.
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of topological theories, so that various equations of the Tse- 
noglou*s theory are transformed into those expressed by pa­
rameters of topological theories. The degree of participation 
of solvents into the solute-solvent system which constitutes 
polymer blend systems affects the distribution states of elas­
tic free energy between the whole entangled chains. The 
free energy of polymer blend systems is directly affected 
by the distribution functions according to the contribution 
extent of the solvent and solute skeleton. The distribution 
functions of these solvents have the forms of distribution 
function equations obtained by the previous topological theo­
ries,13 the contribution terms of solute are the values deter­
mined dependently if the distribution function of solvent has 
only to be determined.

The determination of distribution functions about these 
solvent-solute systems can be carried out by the calculation 
of the projection matrices of corresponding lattice systems 
(eg, the THL model), and the calculation of projection matri­
ces takes different values depending on the degree of contri­
bution of the term of solvent. For the system in which the 
contribution of the solvent term leads to 0.05%, the calcula­
tion value of the typical projection matrix I쟤 is given in 
Table 1. As shown earlier, the total elastic free energy of 
the polymer system is composed of F어血 Lt여” and F2 
(see Eq. (A4) of appendices).

The length of strands of each component polymer which 
moves about in polymer blends affects single and double 
contact probabilities (zg, gp and hP) between strands. Usually, 
the longer the length of strands is, the greater the values 
of single and double contact probabilities of strands are. The 
greater the values of these distribution functions are, the 
greater the values of contribution terms of free energy are, 
and the larger the values of total free energies are in poly­
mer blend systems. Such an aspect is shown in Figure 3.

The values of curves of free energy have been calculated 
by using Eqs. (A13) and (A16), and then plotted in Figure 
3. Also the experimental data converted from the Refs. 16, 
20-23 are plotted in Figure 3. The various polygons (e.g., 
inverse triangles, hexagons, circles, squares, and regular tri-

Table 2. The values of parameters used in calculating the elastic 
energy curves on the given polymer blends

0.150

、\ Parameter 6 
(X10) (X10)

a
(X104)

P 
(X103)blend system

PPO/PS 3.242 7.543 3.784 9.483
MPC/PS 4.437 8.764 3.958 8.441
PMMA/PSAN 2.146 8.911 4.013 8.379
PEO/PMMA 5.381 8.953 4.162 8.145
PVF/PMMA 7.477 8.969 4.287 8.027

(

즈

 

—-
-

Y  3
느 
므

0.120

0.090

0.060

0.030

4.0 6.0 8.0 10：0
1/X

Figure 4. The curves related with F0,ph,风皿,Fu and F2 for 
the polystyrene blend system (MPC/PS).

angles) which are located intermittently along the calculated 
curve of each sample represent experimental data points con­
verted from the given references. Here it is proved that 
the theoretical results show good agreemeent with the given 
experimental data. The polymer blends plotted in Figure 3 
are PPO(poly-(2,fr-dimethylphenyleneoxide))/PS(polystyrene),20 
MPC(tetramethylpolycarbonate)/PS,21 PMMA(poly(methyl- 
methacrylate^/PSANCpolyCstyrene-acrylonitrile)),22 PECXpoly 
(ethyleneoxideW/PMMA,23 PVF(poly(vinylidene fluoride))/ 
PMMA16 blend systems.

The parametric values about each sample, used in calcula­
ting these theoretical values, are shown in Table 2. Concre­
tely speaking, such are & 言,a, and p. The quantity ； is 
the distribution probability parameter, which has the varia­
tion values less than one and more than zero (see Eq. (30)). 
a is a normalized constant (see Eq. (29)). p is the number 
density parameter of j chains per unit volume of the blend 
(see Eq. (23)). The physical meaning of 8 is the ratio of 
the end-to-end distance of a strand in the standard configu­
ration versus that of a strand in the phantom network.

The curves related with E伊, F히仲, Fb and F2 for the poly­
styrene system are plotted in Figure 4. In Figure 4, the gra­
phs of the total free energy and each component energy 
of the MPC/PS blends are plotted in the shapes of curves. 
As shown in Figure 4, F0itop is the first, and F이匝 is the 용econd 
in order of contribution to the total free energy. Usually, 
F0-Ph is treated with the functions of distance of displacement 
between junction points. Though the contribution of F2 and 
Fi is a little, these energy terms contribute to the total free 
energy in a regular pattern. It is regarded that such a contri-
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Figure 5. The calculated curves of 加(d)'s as functions of d, 
which is a distance between the centers of the strands. These 
values are used in calculating F°岫.

Figure 7. The calculated curves of Ge evaluated from Eq. (43) 
versus \|/.

Rgure 6. The calculated curves of 母서)'s as functions of d, 
w버사！ is a distance between the centers of the strands. These 
values are used in calculation F여冷 

bution pattern of each component energy term to the total 
free energy is alike to those of other polymer 이end systems.

In order to evaluate F이皿 for each 바end system, the values 
of distribution functions hp and gp should be calculated. A 
series of hp and gp functions are given in Figure 5 and in 
Figure 6, respectiv이y. Figure 5 is the graph which plots 
the double contact distribution function displacement of cen­
ters of strands for a strand having constant length. It is 
shown that the larger the length of strands is, the greater 
the vlaues of distribution functions are. Here we see that 
the values of distribution functions of polymer blends are 
exactly arranged with order of total free energy values of 
the given polymer blends. In other words, the order of dist­
ribution functions of Figure 5 is exactly alike to order of 
total free energies of Figure 3.

Figure 6 is 난｝e graph which plots the single contact distri­
bution function displacement of centers of strands for a st­
rand having constant length. The pattern of Figure 6 resem­
bles th죠t of Figure 5, but all of the values of functions are 
smaller than the values of functions of Figure 5. Such a phe­
nomenon is self-evident in that the probability of double 
contact is greater than the probability of single contact. It 
is shown that the order of values of distribution functions 
of Figure 6 is exactly alike to 나le one of Figure 5.

The related graphs of Ge versus Y evaluated from Eq.

Hgure 8. The calculated curves of M爾 evaluated from Eq. (31a) 
versus

(43), are given in Figure 7. Also the relationship with the 
experimental data obtained from the previous reference is 
shown in Figure 7. Figure 7 represents the curves of equilib­
rium shear moduli G；s of several polymer blends, which 
are plotted with 나｝e values of the s이ute-solvent distribution 
functions (see Eq. (43)). The merit of the present work is 
the fact that for 난此 Tsenoglou's work, the values of G；s 
of(mly the confined areas of the s이ute-s이vent distribution 
can be offered, while for the present work, all the values 
of G；s of 사le full areas of the solute-solvent distribution 
can be offered.

The values of G/s change greatly around the 驱 value of 
about 0.3. Such a phenomenon is basically caused by the 
fact that for the PVF/PMMA and PMMA/PSAN 이ends, the 
effect of topological interaction due to miscibility of hetero­
geneous polymer strands gets larger.

The relationship with M睇 versus 蜜 is 아lown in Figure
8, and the relationship with M„j versus 啪 is given in Figure
9. Figure 8 is the graph which plots the values of average 
molecular weight of homogeneous polymer strands of five 
polymer 이end systems according to the changing values of 
the s이ute*solvent distribution function. As shown previously, 
the order of decrement of length of strands of polymer 
blends is arranged as follows; PPO/PS, MPC/PS, PMMA/PSAN, 
PEO/PMMA, and PVF/PMMA.

Figure 9 is the graph which plots the values of average
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versus x\i.

molecular weight of heterogeneous polymer strands of the 
five polymer blend systems according to the changing values 
of the solute-solvent distribution function. The order of va­
lues of molecular weight is exactly the same as that of Figure
8. Generally, the greater the values of molecular weight of 
strands are, the greater the interaction between strands is.

In the case of lattice systems necessary in calculating pro­
jection matrices, the values of Q, R, and S used in Eqs. (4) 
and (5) are equally twenty. It is proved that the size of the 
lattice system of such an extent is sufficient in describing 
the physical meanings of polymer blend systems.

Letting v be the degree of polymeriz간ion, such polymers 
as polyisoprene, polystyrene, and poly(dimethyl siloxane) 
have the values12 of about 30 to 300. It is assumed that the 
whole systems of the blends considered here are composed 
of the THL's. For the THL model, a cell has 128 junction 
points and 256 strands.13

It is necessary to consider the relationship between cells 
and the wh이e lattice system. Let I, m, and p be the sets 
of the coordinates of integers along the axes x, y, and z, 
respectively. Then we have

l — ~8L, —8L+1,…，—1, 0, 1,…，8L~2, 8L — 1
m — — 8Af, —8AM+1,…，—1, 0, 1,…，8M—2, 8Af — 1
D=—8P, —8P+1,…，-1, 0, l,-t &P—2, 8P-1 (45)

where L, M, and P are all positive integers.
As referred to previously, a strand represents a polymer 

chain which is fixed at any two of junction points. The deg­
ree of polymerization, v, have the values of about 30 to 300 
for such polymers as polyisoprene, polystyrene, and etc.12 
It is assumed that the whole systems of polymer blends con­
sidered here are composed of the THL's. A cell is composed 
of eight subcells. A cell has one hundred and twenty eight 
junction points and two hundred and fifty six strands.

In the lattice model, the standard configuration represents 
the form of arrangement in which all the strands are arra­
nged linearly with all the strands pressed tightly in the form 
of springs. In the case of calculation of projection matrices, 
the standard oonfigur가ion of lattices has often been taken 
as the reference state of the system.

The definition of 8 is given by the ratio of the end-to-end 
distance of a strand in the standard configuration versus 
that of a strand in the phantom network, th가 is,

8 = 3梳九/(寸/2 b) (46)

where d0 is a half of the length of an edge of the lattice, 
v is the degree of polymerization, and b is the length of 
a segment. Typical elastic polymers, such as polyisoprene, 
polystyrene, and etc. whose v values are given as 30 to 300, 
have the 8 values of 0.2 to 0.8.

The curves of the total free energy and each component 
energy is plotted in Figure 10 for the PVF/PMMA blend. 
We see that the pattern of the contribution of each compo­
nent energy to the total free energy is similar to that of 
Figure 3.

Conclusion

The gist of the present work is the work that first transfo­
rms the parameter G of the Tsenoglou's theory into the 
form of aPW of topological theories, and obtains the curves 
of the total free energy of polymer blends against the values 
of inverse strain, then calculates theoretically the values of 
equilibrium shear moduli and molucular weight of polymer 
blend systems according to the changing values of the solute­
solvent distribution function by assuming the five given poly­
mer blend systems as the THL model. The central content 
is the fact that the interaction between strands of polymer 
networks mainly contributes to the total free energy of poly­
mer systems. It is known that the contributive part due to 
displacement of junction points is smaller than that of 
strands.

Especially, the excellent merit of the present work is loca­
ted in the fact that the previous Tsenoglou's work can obtain 
corresponding physical properties only for polymer blends 
having confined compositive ratios, while the present work 
can calculate and obtain corresponding physical properties 
(e.g., molecular weight, equilibrium shear moduli, and total 
free energy) over all the solute-solvent distribution as possi­
ble as can be (see Figures 7-9).

In order to analyze topologically the Tsenoglou's theories, 
the values of molecular weights and moduli are represented 
with topological theories by establishing the THL model. Es­
pecially, the parameter U has been analyzed with the combi­
nation functions of the wave functions of topological theories, 
and transformed into the types of functions obtained from 
the results of projection matrices.

According to topological theories, the free energy of the 
blend system contains the elastic energy caused by contact 
of strands as the mainly contributive parts. For polymer 
blend systems, the distance of the junction points which have 
cross-link each other is changed depending on the state of 
distribution of solute-solvent. In order to discuss such an 
aspect strictly, it is necessary to treat systematically interac­
tion between strands which form the lattice structure by 
assuming the five given polymer blend systems as the THL 
model. It is assumed that all the miscible polymer blends 
form the lattice structure of the THL model whether the 
state of polymer blends is solid or not. It is regarded that 
such an assumption is reasonable when considering the mo­
tion of polymers for a constant average time interval.

The average length of strands can be obtained from the 
values of molecular weight of corresponding polymers. The 
vlaues of single and double contact distribution functions



178 Bull. Korean Chem. Soc. 1995 Vol. 16, No. 2 Jung Mo Son and Hyungsuk Pak

Figure 10. The component curves of free energy on the poly­
mer blend PVF/PMMA. these calculated curves are obtained by 
applying Eqs. (A13) to (A16) to the given polymer system.

can be calculated from information about the length of 
strands. Actually, these values of contact distribution func­
tions afford the detailed scale of interaction by entanglement 
of strands.

Once the values of these contact probability functions are 
known, the value of interaction energy by entanglement bet­
ween strands can be obtained. And also once the values 
of projection matrices are known, the contribution of free 
energy by fluctuation of junction points can be obtained. In 
this way, the values of the total free energy have been obtai­
ned, as functions inverse strain, from contact distribution 
functions and projection m가rices for all the given polymer 
blends.

In Figure 10, the graphs of each component of elastic ener­
gy are plotted. The graphs of curves of free energy depen­
ding upon 1/X for PVF/PMMA are 아lown in Figure 10, 
where the curves are represented with the values of the 
parameter 8 in Figure 10. Since the contact probabilities of 
strands are increased with increment of the degree of poly­
merization v, the more the degree of polymerization is de­
creased, the more the value of 8 is increased, and then the 
more the contribution to F is increased. The peaks of curves 
of energy move towards the left side of the x axis.

The cause of such a phenomenon may be originated from 
the fact that the interaction between strands is sensitively 
affected by the values before or behind one because of the 
increment of v.

For each polymer blend, according to the degree of contri­
bution of the solvent participated, there are variously cha­
nged the values of contact distribution functions among sol­
vent-solute, s 이 ute・solute, and solvent-solute molecules. 
These patterns ar shown in Figures 5 and 6.

The greater the values of functions of single or double 
contact aref the more the contribution to elastic free energy 
is increased.

For the blends considered here, the fact has been testified 
that the order of the systems in which topological interaction 
is great is arranged as Allows; such are PPO/PS, MPC/PS, 
PMMA/PSAN, PEO/PMMA, and PVF/PMMA. And it is 
shown that the total free energy in polymer networks gets 
greater in the same order as the case of length of strands. 
As discussed so far, the values of length of strands differ 

depending upon the distribution state of solute-solvent, such 
a result affects the values of molecular weight and shear mo­
duli in a constnat pattern. The longer the length of strands 
is, the greater the contribution part of free energy caused 
by topological interaction is, and resultantly the larger the 
values of the total free energy are. Such an aspect has been 
shown even in the values of molecular weight and moduli 
which were offered in the previous Tsenoglou's work. Alter­
natively speaking, the present work has good agreement with 
the previous Tsenoglou's work.

The effects of interaction of strands by entanglement affect 
distribution functions among strands, these affect each value 
of projection matrices produced from the THL model, and 
then ultimately affect elastic energy originated from topologi­
cal interaction. The evaluated values of parameters are given 
in Table 2. Each value of these affords detailed information 
in relation to the phenomena of topological entanglement 
of each blend.

In the while, the curves related to equilibrium shear mo­
duli and distrib나tion function w are given in Figure 7, where 
it is exposed that the more greater the values of distribution 
functions are, the more increased the values of plateau mo­
duli are. As the cause of such a inclination, it is regarded 
that the degree of entanglement among chains directly con­
tributes to the values of plateau moduli in the case of the 
polymer blends composed of solute-solvent systems.

The degree of variation of molecular weights among steps 
is shown in Figures 8 and 9 with the values changing regula- 
rly.

In the case of each polymer blend considered here, the 
graphs of the result of topological management are shown 
in Figure 3. The experimental values reduced from the Refs. 
16, 20-23 are also given in Figure 3. As shown in the graphs, 
it is exposed that the theoretically calculated values are good 
agreement with the experimental data reduced from the re­
ferences.

As discussed so far, we see that the physical quantities, 
treated with only as simple parameters previously, of the 
Tsenoglou's theories have the close relation with contact fu­
nctions and distribution functions contributed to entangle­
ment As shwon previously, judging from good agreement 
of topological results with experimental data, it can be regar­
ded as logical and reasonable that the parameter G has 
been transformed into the type of aq/P. It is shown that 
various physical quantities about the IPN can be well explai­
ned as topological phenomena.

Appendices 
Transformation Matrices

In the several subsections hereafter, including this one, 
the survey of the preceding topological theories7~12 will be 
described as concisely as possible. The interaction among 
strands plays an important role in the topological theories.7'12 
A word strand means a polymer chain which joins two neigh­
boring junction points. A word junction point means the join­
ting part of strands in the networks. All of the polymers 
representing elasticity are regarded as composed of the net­
work which consists of a great number of junction points 
and strands. In the case of general lattice models, a funda­
mental unit, which describes the physical properties of the 
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whole network system, is called a cell. The another important 
conception of the topological theory is called the GLC(Gauss 
Linking Coefficient). Let's define T얘 to be the GLC between 
loops a and and define 0曲 to be the GLC between strands 
a and b as follows:

低자삐*"" 除妁 (Al)

where p* is a position vector determined by parameter S* 
which takes the variation field within the length area of the 
given segment at any moment. The subscript is a or P 
for loops and a or b for strands, and the quantity 枫 is defi­
ned as dpk/dSk. Let To and 0 be the sets of loop and strand 
GLC's, respectively. Let Tj be a subset which meets the con­
dition that all elements of To should be represented as linear 
combinations of elements of Now the transformation mat­
rices between the sets of loop and strand GLC's are given 
by

几=虻

Ti=T°B
71=이「

(A3)

where To, Tb and 0 are n°, and n2 dimensional row vec­
tors, respectively, and r is «2X«i dimensional matrix. n0 
is the number of GLC's of To, n\ is that of GLC's of 7\ 
and 为2 is that of GLC's of 0.

In the topological theories, the total free energy of the 
network F may be separated into four terms as follows:

F=F이讷+7%"+Fi +F2 (A4)

where F0,ph is a term coming from the entropic force acting 
between the ends of the strands, and FOrtop is one coming 
from the topological interaction among the strands when all 
the junction points deform affinely. Fx is a correction term 
due to nonaffine displacement of the junction points, and 
F2 is one due to the fluctuation of 0. The transition matrices 
of Eq. (A3) contribute only to F2.

A generalized inverse15 of any matrix A is defined by

A + ^(AtAy1Al (A5)

where A1, of course, is a transpose of Ar and 印A) ' is an 
inverse matrix of A1 A. The projection matrices of r and C 
are given by, respectively,

r#=r(rn+r
C#=C(C"广。 (A6)

According to proofs15 of matrix r이ationships,

I쟤 =C#
7戸1呻 = 万。#그龙1 (A7)

where n\ is the number of the elements of Tb Alternatively 
speaking, «i is the number of effective loop pairs. r# should 
be found according to the given model of the network as 
shown later more clearly.

Distribution Function

Usually, the free energy of networks can be calculated 
from the distribution functions of junction points and strands. 
The conditional distribution function \g(r/r) is defined as

广■ 1/2 r
8(/-9Dn[(l-G^)6(9A)

丿 t- 1/2 J P

+ (Gp/%)2r回)1/2 - exp( — (A8)

where 8 is a delta function, r is any element of 73, rtl is 
the set of position vectors of junction points in the reference 
state, and r is the set of those in any state. Gp and Hp are 
given by, respectively

Gp(沪 니'Wr)
%(” =罪油&) (A9)

where y is a characteristic parameter for the given model, 
and v' is the number of submolecules included in a strand. 
In Eq. (A9), p represents the bond pair of the strands a 
and b, and r is represented by

r- \rt{, ", rh, r/l (A10)

where ra and 代 are the position vectors of end points of 
the strand a, and rb and r/ are those of the strand b. Let 
the letter 卩 denote the bond pair of the submolecules a, 
and bj, and the letter 卩'that of the submolecules a, and 
矿

When the vector r is fixed, let Pph (Op I r) be the distribution 
function of single contact obtained when the bond pair 卩 

is formed, and Pph (OM, ji'lr) that of double contact obtained 
when the bond pairs p and 卩'are formed between two 
strands in a phantom network. Then the gp(r) and hp(f) in 
Eq. (A9) are given by

hp(f)~vf~2

gp(T)=v~2 交 玲(이尸)

Y'2.产
[為(Q]T £ 1 F싸(Qw，|r) (All)

M=1 m' =1

where gp{f) is the value of the mean single contact probability 
and hp{r) that of the mean double contact one between sub­
molecules in two strands.

Free Energy of the Network

The derivatives of the total free energy of the network 
F with respect to the macroscopic strain X can be given as 
follows:

业 = 카4湖 8F이어， 迥 커% }
办一 a人 。人。人弧 w

畫=30扌伊'一为 （A13）

흐요虹= 다"德一垃\ ■修- g的;—血;）］

tLv gp垢丿1方；，?；（冨一娣）」

(A14)

쁬 =-쁠 〃 （〈昭〉（〈"〉）+ —2〈讣I사〉（3자〉）+

+ Q가 仃〉（3广〉）+〈方자〉（〈俨〉）+） （A15）
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巫 =_丝(方〒 時2电丄乾―或」
~ 2 1学％h；)

+爲"黔腎)(心)

The letter s of Eq. (A13) represents any strand in the 
network, and 2? is the mean squared end-to-end distance 
of the strand s in the phantom network. The position vectors 
of end points in the strand s are expre옹sed as r/ and rs. 
The symbol dot (•) denotes the first derivatives of given 
functions in regard to 人，such as

*，쓰' 为-务' 给 絮 , (A17)

where the superscript ° attached on the gp and kp represents 
that they are the values at r=r° and the superscript * atta­
ched on the gpt hPi V, W, and etc. denotes that they are. 
the ones at r~f, r being the set of position vectors of junc­
tion points deformed affinelikely under the macroscopic st­
rain X.

Now consider a new function U defined as

U~ -ln<|)(e,而斗 (A18)

where 0(9, r) is the distribution function expressed as

丫「=으功1 (A19)

= 으 으 끼 1 (A20)
OTi CTj

where V* is an M dimensional super vector whose :th ele­
ment is and W* is an M0XM0 super m가rix whose i, j 
element is Wi3.

Since the more detailed contents of Eqs. (A12) to (A16) 
are given by the previous references,11~12 the detailed desc­
ription of the above equations is omitted here.
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