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A Kernel Approach to the
Goodness of Fit Problem!

Daehak Kim?

Abstract We consider density estimates of the usual type generated by a kernel
function. By using the limit theorems for the maximum of normalized deviation of
the estimate from its expected value, we propose to use data dependent bandwidth in
the tests of goodness of fit based on these statistics. Also a small sample Monte
Carlo simulation is conducted and proposed method is compared with Kolmogorov-
Smirnov test.
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1. Introduction

Let X, X, X, be independent and identically distributed random variables
with continuous density function f(x). We consider the well known kernel
density estimates known kernel density estimates

A 1l &, x—X,
f,,(x)—ﬁgK( o) (1)

where }, is bandwidth that tends to 0 as  — o but ;4 — o and g is kernel
function.

Usually, we have a great concern for the underlying distribution of given data.
Main reason is to check the validity of given assumptions on the data. If the
assumptions are not appropriate all results obtained from the statistical analysis
are useless. For these goodness of fit problem, Kolmogorov(1933) suggested an ¢
level test. It is well known and called Kolmogorov-Smirnov one sample test. It
use empirical distribution function.

Nowadays, with the aids of fast modern computers, kernel density estimator can
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be calculated without heavy computational difficulties and is widely applicable.
Bickel and Rosenblatt(1973) considered global measures of how good f,(x) is as
an estimate of f(x) and proved the asymptotic distribution of maximum of
normalized deviation of the kernel estimates from the true density

£ = 1|1 (£ )™ @

By the asymptotic distribution of (2), inference containing goodness of fit
problem based on kernel density estimate are possible and compared with that of
Kolmogorov-Smirnov method. But bandwidth 3, selection problem is remained in
their global measure. So we propose to use data dependent bandwidth in (2) based
on cross-validation. As has been proposed by Bickel and Rosenblatt(1973), we
conduct a small sample Monte Carlo simulation. Empirical powers for various
alternatives are evaluated and compared with Kolmogorov-Smirnov method.

Supan <b

2. Approximation of global measure

Let's consider the following convenient assumptions called A1-A4 for the result
on the global measure of the absolute deviation.
A.1 The kernel function K(.) also assigns mass 1 to the line and either
(a) vanishes outside an interval [-A,A] and is absolutely continuous with
K'(
( 2b) is absolutely continuous on R with k’(.) such that { |_K(t)[hdt <w,k=12
A.2 The density £ is continuous, positive and bounded
A.3 The function f'2 is absolutely continuous and its derivative is bounded in
absolute value. Moreover

I[Mza] |z|3/2 [logloglz[]*[|K' (2)| +|K(2)|}dz < »

A.4 The second derivative £~ of £ exists and is bounded. Moreover K(.) is
symmetric (about 0) and 22K () is integrable.
Now, consider the stochastic process

Y,(x) = (nh)"2[ £, (x) - Ef,(x)]/ £ (x)" 3
and let
M, =sup{|Y,(H)0<t <1} 4

There is no loss of generality in considering [0,1] rather than any other interval on
which the density is bounded away from 0 and oo, We introduce the following
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theorem of Bickel and Rosenblatt(1973).

Theorem 1. (Bickel and Rosenblatt)
Let K(.) satisfy assumptions A1-A3 and j, = 73 (0<8<1/2). Then
P[(281ogn)"* (%{% —d)<x]—>e™ )

where ) = J'Kz ()dt

1 K 1 .
L (28logn)"* + Gologn)” {log n1/12 —5[log8+log logn]} ifk, >0

’ (28logn)"* + log(K," 1 p) otherwise

1
(281logn)"?
where K, =1 (K*(4)+K*(-A) /% and K, =1 [[K'(t)f'de /&

Remark. The kernel function

0.5 Ji]<1

. 6)
0 otherwise

K(t) = {

falls under the first case‘(a), while the optimal kernel function of Epanechnikov

0.75(1-12/5)/5 || <5
0 otherwise

K(1) ={ (7)

(1969) falls under the second case (b).

3. Applications

To test the null hypothesis A: f = £, 1t 1s natural to compute M, with f = £
and reject for large values of the statistics. According to the theorem 1, to obtain
approximate level ¢ we should use as cutoff point,

1/2
(28 logn)"?

Under some assumptions the same cutoff point may be used for testing composite
hypothesis of the form #: f = £,(,0) where ¢ is unknown parameter.

When computing jf , we propose to use a data dependent bandwidth / which
replaces =% in Mn. Data dependent bandwidth selection methods are crucial

c(a) = —[logllog(1-a)| - log2] +d A" 8)
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problem in modern kernel estimation area. Least squares cross-validation method
suggested by Rudemo(1982) and Bowman(1984) is a strong candidate. The idea
of cross-validation is to minimize the score M, (k) over j

My(hy= [ f2 =207 72(X)

where £, =(n-1)"h'y,, K{h™ (x~ X,)}- Stone(1984) had shown that cross-
validatory choice of bandwidth achieves the best possible choice of smoothing
parameter in the sense of minimizing the integrated squared error. By using j
based on cross-validation method, the cutoff point (7) becomes

1/2

A 112
cx(a) = —[logllog(l—a)l—log2]w+dnk/ Q)

4. Monte carlo Simulation

In order to compare the performance of proposed method based on kernel
density estimator with Kolmogorov-Smirnov test based on empirical distribution
function, Monte Carlo simulation was carried out for small sample cases. We
consider standard normal distribution as a null distribution in all cases. Various
alternative distributions such as cauchy, uniform, t distribution with 1 degree of
freedom were considered. Though the shape of distribution is not identical to
normal distribution, the mean and variance are close to the null hypothesis.
Normal distribution with mean |, and standard deviation 5 was also considered as
an alternative distribution ( p=0,0.50.75,1.0 and 52 =1,2,3 respectively). It will
be interesting to compare the two tests when a small changes happen in mean and
variance.

For the reason of computational efficiency we used the Epanechnikov kernel.
Empirical powers were computed based on 1000 replications with 4 sample size
n=10,20,30,40. All computation was carried out by Sun-10 Workstation and
random numbers were generated through IMSL(1991). The numerical integration
nedeed to compute

B, ()= [KCS2)f )y

was done using evenly spaced grid of 100 point for the appropriate range by using
Simpson's method.
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Table 1. Empirical power with =10, o = 0.05

n=10 u=0 p=0.5 p=0.75 p=1
8 |o’|h h, kol|h h, kol |h h, kol |h h, kol
1 [.09.08.04 [.47.55.28 [.72.79 .54 | .89 .92 .78
0.05 |2 [.76.93.12 |.89.96 .41 |.97.98.72 |.99 .99 .88
3 11.91.98.16 |.97.99.51 |.99.99.77 | .991.0.91
1 |.08.06.04 |.51.62.26 |.76.86.52 | .90 .94 .74
0.1 [2 |.80.96.10 | .89.97 44 | .97 .99 .66 | .99.99 .88
3 1.94.99.17 | .97.99.51 |.99.99.75 | 1.01.0.93
1 [.08.08.06 |[.52.690.28 |.71.86.53 | .89 .97 .77
02 [ 2 |.77.97.12 | .89.99 .41 |.96.99.67 |.991.0.88
3 §1.911.0.19 |.981.0.49 |.99.99.77 | 991.0.92

Results are appeared in Table 1 to 5. From Table 1 to Table 4, each value
represent the empirical power when samples were drawn from N(u,c?). We

choose delta 0.05,0.1 and 0.2 for Mn where }, = 57%. Kolmogorov-Smirnov results
are denoted by "kol". The proposed method was denoted ]f,cv.

Table 2. Empirical power with 5 = 20, o, = 0.05

n=20 p=0 p=0.5 pu=0.75 p=1

8 |o’| h h, kol |h h, kol |h h, kol | h h, kol
1 |.08.07.06 |.62.76 .48 | .91 .94 .84 | .99.99 97

005 [2 1.91.99.14 |.98.99.69 |.991.0.93 | 1.01.0.99
3 1.991.0.30 [.991.0.79 [1.01.0.95 | 1.01.0.99
1 ].07.06.05 [.70.85 48 | .92 .97 .83 | .99.99 .97

0.1 [2].93.99.17 | .981.0.66 | 1.01.0.94 | 1.01.0.99
3 1.991.0.26 |.991.0.80 [1.01.0.96 |1.01.0.99
1 ]1.08.05.06 |.66.89 .50 | .91.98 .83 |.991.0.96

02 [2 ].90.99.17 |.98.99.65 |.991.0.93 |[1.01.0.98
3 ]1.981.0.27 [.991.0.77 [1.01.0.98 | 1.01.0.99

Empirical powers of proposed method and Bickel and Rosenblatt's method were
uperior than Kolmogorov-Smirnov method in all cases. Particularly, when small
changes happen in variance, empirical power of Kolmogorov-Smirnov method
was very low, but the other two methods were very high in all cases. It is notable
result.
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Table 3. Empirical power with , = 30, o = 0.05

n=30 u=0 n=0.5 n=0.75 p=1

& |o” | h h, kol |h h, kol |h h, kol |k h_ kol
I ].05.06.05 [ .81.90.65 | .98.99.95 |.991.0.99

005 |2 [1.96.99.17 | .991.0.84 |1.01.0.99 | 1.01.0.99
31.99.99.43 |1.01.0.94 {1.01.0.99 |1.01.01.0
I |.06.05.05 |.79.95.66 | 98.99.95 | 1.01.0.99

0.1 {2 1.95.99.18 |.991.0.85 |1.01.0.98 | 1.01.01.0
3 1.991.0.42 [1.01.0.94 [1.01.0.99 |1.01.01.0
I [706.06.05 | .77.94 .66 | .97 .99 94 | .991.0.99

02 [2 .94.99.19 | .991.0.84 {1.01.0.98 |1.01.0.99
371.991.0.38 [ .991.0.93 [1.01.0.99 [ 1.01.01.0

Table 5 represent empirical powers when samples were drawn from the three
distributions which are different from the null distribution. We considered
uniform (_./3,./3), student's t distribution with 1 degrees of freedom and cauchy
distribution. In this case, the proposed method and Bickel and Rosenblatt's method
are similar in their perfomance and results were better than Kolmogorov-Smirnov
‘method. In cauchy distribution, proposed method does not work well as well as
Komogorov-Smirnov method but Bickel and Rosenblatt's method works well. It
seems that large bandwidth is selected in cauchy distribution due to the large data

variation.

Table 4. Empirical power with , = 40, o = 0.05

n=

40

p=0

p=0.5

p=0.75

p=1

)

5]

h h, kol

h h, kol

h h, kol

h h, kol

0.05

.05 .06 .05
.98 .99 .23
1.01.0 .52

.87 .96 .79
1.01.0.93
1.01.0.97

.99 .99 .98
1.01.0.99
1.01.01.0

1.01.0.99
1.01.01.0
1.01.01.0

0.1

.06 .06 .05
991.0 .21
1.01.0.52

.89 .98 .78
1.01.0.92
1.01.0 .98

.991.0.99
1.01.0.99
1.01.01.0

101.01.0
1.01.01.0
1.01.01.0

0.2

WN'—'U)NHUJND—Q

.05 .05 .05
.96'.99 .23
299 1.0 .51

.87 .98.76
1.01.0.93
1.01.0 .98

.99 .99 .98
1.01.0 .99
1.01.01.0

1.01.01.0
1.01.01.0
1.01.01.0
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Table S. Empirical power with o = (.05
(H,:N(0,1) vs H:Not Hy)

distri- N n=10 n=15 n=20
bution | & h h, kol | h hy, kol | h h, kol
uniform [0.05 [.86.77.77 |.92.78 .80 |.92.78 .78
(-V3,v3) | 0.1 |.95.91.93 |.96.96.94 |.97.97.93
0.2 |.98.97.98 |.99.96.98 |.99.98.98
- 0.05 [.39.29.13 |.50.45.12 [.58.57 .12
(1) 0.1 |.41.37.15 |.58.54.14 [.59.61.14
v 0.2 |.53.47.19 |.63.63.19 |.66.69.20
0.05 [.36.05.13 [.47.09.12 [ .57.15 .11
cauchy [ 0.1 |.43.13.16 |.58.14.17 |.60.17.16
02 |.52.14.20 |.64.18 .21 |.69 .22 .19
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