Reliability Estimation for a Shared-Load System Based on Freund Model Yeon Woong Hong¹, Jae Man Lee², Young Joon Cha² Abstract This paper considers the reliability estimation of a two-component shared-load system based on Freund model. Maximum likelihood estimator, order restricted maximum likelihood estimator and uniformly minimum variance unbiased estimator of the reliability function for the system are obtained. Performance of three estimators for moderate sample sizes is studied by simulation. Key words: Shared-load model, Reliability function, UMVUE, Order restricted MLE #### 1. Introduction The quantification of the reliability of parallel systems is based on the assumption that, when a redundant component fails, the failure rate or the reliability of the surviving components is not affected by the failed component. In some situations, however, all the components share the load during the mission and the failure rate of the surviving components may increase due to increased load when a component fails. Systems such as a multi-processor computer and electric generators sharing an electrical load in plant can be described by a shared-load model. To correctly determine the reliability of such systems, the increase of failure rate of the surviving components has to be considered. Freund(1961) proposed a bivariate extension of the exponential distribution by allowing the failure rate of the surviving component to be changed after the failure of one component. The Freund model applies, in particular, to two-component shared-load system that can function even if one component has failed. He also obtained the maximum likelihood estimators(MLE's) of the model parameters. Weier(1981) obtained Bayes estimators of parameters and reliability function for the Freund model. Department of Industrial Engineering, Dongyang University Department of Statistics, Andong National University In this paper we obtain MLE, order restricted maximum likelihood estimator (OMLE), and uniformly minimum variance unbiased estimator(UMVUE) of the reliability function for the Freund model. Finally, numerical studies are carried out to compare these estimators. ### 2. Reliabilty Estimation for a Shared-load Model Consider a system which functions when at least one of the two identical components functions. Let Z_1 and Z_2 are independently and identically distributed random variables(rv's) with constant failure rate $\lambda(>0)$. Let $X_1 = \min(Z_1, Z_2)$ and $X_2 = \max(Z_1, Z_2)$. Then X_1 and $(X_2 - X_1)$ are independent exponential rv's with failure rates 2λ and λ_1 , respectively, where $\lambda_1 (\geq \lambda)$ is the failure rate of a surviving component when one of the two components fails at X_1 . System failure occurs at time X_2 . Then the reliability of a two-component shared-load system is given by (see Scheuer (1988) and Lin et al. (1993)) $$R(t) = \Pr(X_2 > t)$$ $$= \begin{cases} \frac{\lambda_1}{\lambda_1 - 2\lambda} e^{-2\lambda t} + \frac{2\lambda}{2\lambda - \lambda_1} e^{-\lambda_1 t}, & \text{if } 2\lambda \neq \lambda_1 \\ (1 + 2\lambda_c t) e^{-2\lambda_c t}, & \text{if } 2\lambda = \lambda_1 \end{cases}$$ (1a) where $\lambda_c = \lambda$ when $2\lambda = \lambda_1$. Suppose n systems each with 2 components are put on test. Let $Y_{1j} = X_{1j}$ and $Y_{2j} = X_{2j} - X_{1j}$, where $X_{1j} = \min(Z_{1j}, Z_{2j})$ and $X_{2j} = \max(Z_{1j}, Z_{2j})$ denote the ordered lifetimes observed on j - th system, $j = 1, 2, \dots, n$. Then Y_{1j} and Y_{2j} are independent exponential rv's with failure rates 2λ and λ_1 , respectively. The likelihood function can be written as $$L = \begin{cases} (2\lambda\lambda_1)^n \exp(-2\lambda t_1 - \lambda_1 t_2), & \text{if } 2\lambda \neq \lambda_1 \\ (2\lambda_c)^{2n} \exp(-2\lambda_c(t_1 + t_2)), & \text{if } 2\lambda = \lambda_1 \end{cases}$$ (2a) where $t_i = \sum_{j=1}^{n} y_{ij}$, i = 1, 2. The MLE's of λ_i and λ_c are given, respectively, by $$\hat{\lambda}_i = \frac{n}{(2-i)T_{i+1}}, \qquad i = 0,1$$ $$\hat{\lambda}_c = \frac{n}{T_1 + T_2}$$ (3) and the MLE of R(t) can be easily obtained, where $\lambda_0 = \lambda$. Let G(n,b) denote the gamma probability density function(pdf) of the form $$f_{n,b}(x) = \frac{b^n}{\Gamma(n)} x^{n-1} e^{-bx}, \qquad x \ge 0.$$ We note that $T_i \sim G(n, (3-i)\lambda_{i-1})$ when $2\lambda \neq \lambda_1$, and $T_1 + T_2 \sim G(2n, 2\lambda_c)$ when $2\lambda = \lambda_1$. It can be shown that $$E(\hat{\lambda}_{i}) = \frac{n}{n-1} \lambda_{i}, \quad n > 1, \qquad Var(\hat{\lambda}_{i}) = \frac{n^{2}}{(n-2)(n-1)^{2}} \lambda_{i}^{2}, \quad n > 2$$ $$E(\hat{\lambda}_{c}) = \frac{2n}{2n-1} \lambda_{c}, \qquad Var(\hat{\lambda}_{c}) = \frac{2n^{2}}{(n-1)(2n-1)^{2}} \lambda_{c}^{2}, \quad n > 1$$ (4) and higher moments can also be readily obtained. From (4), we know that the MLE's of λ_i 's and λ_c are positively biased. Since (T_1, T_2) and $T + T_2$ are complete sufficient statistics for the family of distributions (2a) and (2b), respectively. The UMVUE of λ_i 's and λ_c are obtained as $$\widetilde{\lambda}_{i} = \frac{n-1}{(2-i)T_{i+1}}, \quad n > 1, \quad i = 0,1,$$ $$\widetilde{\lambda}_{c} = \frac{2n-1}{2(T_{1} + T_{2})}, \quad n > 1.$$ (5) We now find the OMLE of the reliability function when $2\lambda \neq \lambda_1$. Naturally, failure of one component reduces the additional mean life of the remaining component by increasing λ to λ_1 . Our problem then becomes one of isotonic estimations, that is, the estimation of R(t) subject to the order restriction $\lambda \leq \lambda_1$. When certain ordering is known a priori about the parameters to be estimated, estimation under order restriction is required to reflect this knowledge. Order restricted inference has been worked by Marshall & Proschan(1965), Barlow et al.(1972) and Kaur & Singh(1991). Kaur & Singh(1991) considered maximum likelihood estimation of two ordered exponential means and established that MLE's obtained under the order restriction have pointwise smaller mean squared error than the usual estimators, i.e., the sample means. By using the max-min formula of isotonic regression(see Barlow et al.(1972)), we have the OMLE's of λ and λ_1 as $$\hat{\hat{\lambda}} = \min \left\{ \frac{n}{2T_1}, \frac{2n}{2T_1 + T_2} \right\},\,$$ and $$\hat{\lambda}_1 = \max \left\{ \frac{n}{T_2}, \frac{2n}{2T_1 + T_2} \right\}$$ (6) Substituting $(\hat{\lambda}, \hat{\lambda}_1)$ for (λ, λ_1) in (1a), we can obtain the OMLE of R(t). The UMVUE of R(t) is given in the following theorem. **Theorem 1.** Let $U = \min(T_1, T_2)$, $V = \max(T_1, T_2)$, and $W = T_1 + T_2$. Then, for n > 1, the UMVUE of R(t) is given by (i) If $\lambda \neq 2\lambda_1$; $$\widetilde{R}(t) = \begin{cases} 1, & \text{if } t = 0, \\ \left(1 - \frac{t}{U}\right)^{n-1} + s(t), & \text{if } 0 < t \le U, \\ s(U), & \text{if } U < t \le V, \\ s(U) - s(t - V), & \text{if } V < t \le U + V, \\ 0, & \text{if } U + V < t, \end{cases} \tag{7}$$ where $s(x) = (n-1/U) \int_0^x (1-t-w/V)^{n-1} (1-w/U)^{n-2} dw$. (ii) If $\lambda = 2\lambda_1$; $$\widetilde{R}(t) = \begin{cases} 1, & \text{if } t = 0, \\ \left(1 - \frac{t}{W}\right)^{2n-1} + \frac{(2n-1)t}{W} \cdot \left(1 - \frac{t}{W}\right)^{2n-2}, & \text{if } t < W, \\ 0, & \text{if } W \le t. \end{cases}$$ (8) Proof of part (i) Define $$\phi_{t}(Y_{11}, Y_{21}) = \begin{cases} 1, & \text{if } Y_{11} + Y_{21} > t, \\ 0, & \text{otherwise.} \end{cases}$$ (9) Then $\phi_t(Y_{11}, Y_{21})$ is an unbiased estimator of R(t). Therefore, by the Rao-Blackwell and Lehmann-Scheffe theorems, the UMVUE of R(t) is given by $$\widetilde{R}(t) = E[\phi_{t}(Y_{11}, Y_{21}) | T_{1} = t_{1}, T_{2} = t_{2}]$$ $$= \iint_{R} f_{1}(y_{11} | t_{1}) \cdot f_{2}(y_{21} | t_{2}) dy_{11} dy_{21}$$ (10) where $R = \{(y_{11}, y_{21}); y_{11} + y_{21} > t, 0 < y_{i1} < t_i, i = 1,2\}$ and $f_i(y_{i1}|t_i)$ is the conditional pdf of y_{i1} given t_i . It can be seen that $$f_i(y_{i1}|t_i) = \frac{n-1}{t_i} \left(1 - \frac{y_{i1}}{t_i}\right)^{n-2}, \qquad 0 < y_{i1} < t_i$$ (11) Substituting (11) into (10), we obtain the stated result. The proof of part (ii) can be easily shown by using the fact that $W \sim G(2n, 2\lambda_c)$. **Table 1.** Estimated Bias and MSE for $\lambda = 1$ | | R(t) | | Bias | | | MSE | | | |-------------|--------|---------------------------|---|--|---|--|--|--| | λ_1 | | n | MLE | OMLE | UMVUE | MLE | OMLE | UMVUE | | 1.0 | .99094 | 5
10
15
20
30 | 00399
00177
00131
00096
00064 | 00343
00156
00120
00087
.00059 | .00020
.00008
00011
00008
00007 | .00010
.00003
.00002
.00000 | .00008
.00003
.00002
.00000 | .00004
.00002
.00001
.00000 | | 1.3 | .98834 | 5
10
15
20
30 | 00504
00225
00167
00123
00082 | 00466
00216
00163
00120
00081 | .00025
.00010
00014
00011
00009 | .00016
.00004
.00003
.00002
.00001 | .00014
.00004
.00003
.00002
.00001 | .00007
.00003
.00002
.00001
.00000 | | 1.5 | .98664 | 5
10
15
20
30 | 00571
00256
00190
00140
00093 | 00541
00250
00188
00138
00093 | .00028
.00011
00016
00012
00010 | .00020
.00006
.00004
.00002
.00001 | .00019
.00006
.00004
.00002
.00001 | .00009
.00004
.00003
.00002
.00001 | | 3.0 | .97456 | 5
10
15
20
30 | 01003
00457
00341
00252
00168 | 00999
00456
00341
00252
00168 | .00049
.00020
00030
00024
00018 | .00063
.00018
.00012
.00007
.00005 | .00062
.00018
.00012
.00007
.00005 | .00030
.00012
.00009
.00005
.00004 | | 5.0 | .96020 | 5
10
15
20
30 | 01427
00660
00495
00370
00245 | 01427
00660
00495
00370
00245 | .00069
.00028
00045
00037
00027 | .00131
.00040
.00027
.00016
.00010 | .00131
.00040
.00027
.00016
.00010 | .00069
.00027
.00020
.00013
.00009 | ## 3. Numerical Comparisons In this section, we present some numerical results and compare the bias and the mean square error(MSE) of the UMVUE, OMLE and MLE of R(t) for moderate sample size. Samples of size n were generated. The experiment was repeated 1000 times with $\lambda_1/\lambda=1.0,1.3,1.5,3.0,5.0$ for $\lambda=1,2$ and t=0.1. For each repetition the estimated bias and MSE were calculated for each estimator. The results are given in Tables 1 and 2. In general, as expected, the estimated bias of the UMVUE is found to be considerably smaller than the estimated biases of the MLE and OMLE. The estimated MSE's of the three estimators of R(t) tend to increase as the ratio of λ_1 to λ increases, and to decrease when n increases. Also, the estimated biases and MSE's of the MLE and OMLE are comparable and the differences in bias and MSE are found to be quite small and tend to zero as the ratio of λ_1 to λ increases. **Table 2.** Estimated Bias and MSE for $\lambda = 2$ | | | | Bias | | | MSE | | | |-------------|--------|---------------------------|---|---|---|--|--|--| | λ_1 | R(t) | n | MLE | OMLE | UMVUE | MLE | OMLE | UMVUE | | 2.0 | .96714 | 5
10
15
20
30 | 01252
00547
00382
00305
00191 | 01067
00506
00346
00289
00180 | .00052
.00039
00000
00022
00006 | .00072
.00027
.00017
.00011
.00006 | .00066
.00025
.00017
.00010
.00006 | .00031
.00018
.00013
.00008
.00005 | | 2.6 | .95812 | 5
10
15
20
30 | - 01553
- 00685
- 00476
- 00380
- 00238 | 01430
00673
00468
00378
00237 | .00055
.00043
00002
00028
00007 | .00111
.00043
.00028
.00017
.00010 | .00106
.00042
.00028
.00017
.00010 | .00051
.00029
.00021
.00014
.00008 | | 3.0 | .95231 | 5
10
15
20
30 | 01737
00771
00534
00426
00266 | 01646
00767
00533
00425
00266 | .00055
.00043
00004
00032
00008 | .00140
.00055
.00035
.00022
.00012 | .00136
.00055
.00036
.00022
.00012 | .00065
.00038
.00027
.00017
.00011 | | 6.0 | .91334 | 5
10
15
20
30 | 02801
01292
00878
00691
00431 | 02791
01292
00878
00691
00431 | .00007
.00018
00026
00057
00015 | .00380
.00163
.00104
.00064
.00036 | .00379
.00163
.00104
.00064
.00036 | .00202
.00119
.00084
.00053
.00032 | | 0.0 | .87195 | 5
10
15
20
30 | 03637
01736
01153
00889
00554 | 03642
01736
01153
00889
00554 | 00129
00067
00065
00080
00019 | .00680
.00314
.00198
.00122
.00067 | .00681
.00314
.00198
.00122
.00067 | .00410
.00243
.00167
.00105
.00061 | #### References - Barlow, R.E., Bartholomew, D.J., Bremner, J.M., and Brunk, H.D.(1972), Statistical Inference Under Order Restrictions, Wiley, New York. - Freund, J.E.(1961). A bivariate extension of the exponential distribution, Journal of the American Statistical Association, 57, 971-977. - Kaur, A. and Singh, H.(1991), On the estimation of ordered means of two exponential populations, *Annals of the Institute of Statistical Mathematics*, 43, 347-356. - Lin, H.H., Chen, K.H., and Wang, R.T.(1993). A multivariate exponential shared-load model, *IEEE Transactions on Reliability*, 42, 165-171. - Marshall, A.W. and Proschan, F.(1965), Maximum likelihood estimation for distribution with monotone failure rate, *The Annals of Mathematical Statistics*, 36, 69-77. - Scheuer, E.M.(1988), Reliability of an m-out-of-n system when component failure induces higher failure rates in survivors, *IEEE Transactions on Reliability*, 37, 73-74. - Weier, D.R.(1981). Bayes estimation for a bivariate survival model based on exponential distributions, Communications in Statistics, Part A-Theory and methods, 10, 1415-1427.