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BAYESIAN ESTIMATION PROCEDURES IN
MULTIPROCESS DISCOUNT
NORMAL MODEL'
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Abstract A model used in the past may be altered at will in modeling for the future.
For this situation, the multiprocess dynamic model provides a general framework.
In this paper we consider the multiprocess discount normal model with parameters
having a time dependent non-linear structure. This model has nice properties such
as insensitivity to outliers and quick reaction to abrupt changes of pattern.

Keywords : Multiprocess Dynamic Model, Normal Discount Bayesian Model,
Nonlinear Model.

1. Introduction

Dynamic systems have been used by communications and control engineers to
the state of a system as it evolves through time since the works of Kalman(1960).
Kalman(1960) developed an recursive estimation procedure for the state variables
of a linear dynamic system. Ho and Lee(1964) studied the dynamic linear model
with Bayesian framework. Duncan and Horn(1972) introduced the Kalman filter
by relating the dynamic linear model to random B regression theory using the
time varying random parameters as state variables. Harrison and Stevens(1976)
summarized the foundations of Bayesian forecasting as the parametric or
statespace model, the probabilistic information on model parameters, the
sequential model definition which describes the dynamic behavior of model
parameters and some uncertainty in choosing the underlying model from a number
of discrete alternatives. Ameen and Harrison(1985) developed normal discount
Bayesian models in order to overcome some practical disadvantages of dynamic
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linear models. West, Harrison, and Migon(1985) developed the dynamic
generalized linear model for applications in non-linear, non-normal time series
and regression problems. Migon and Harrison(1985) proposed a descriptive
model related television advertising to consumer awareness,

The multiprocess dynamic linear model was developed by Harrison and Stevens
(1971, 1976) for the time series that contain outliers and are subject to abrupt
changes in pattern. Smith and West(1983) and Smith, Gordon, Knapp and
Trimble(1983) described a related monitoring procedure for detecting various
forms of kidney failure in renal transplant patients. West and Harrison(1986)
studied the method of model monitoring and adapting to structural changes in the
time series. Bolstad(1986) presented Harrison-Stevens forecasting algorithm and
the multiprocess dynamic linear model. Bolstad(1988) developed the multiprocess
dynamic generalized linear model. Bolstad(1995) developed the multiprocess
dynamic poisson model for estimating and forecasting a poisson random variable
with a time-varying parameter. Whittaker and Fruhwirth-Schnatter(1994) used to
a triangular multiprocess Kalman filter for detecting bacteriological growth in
routine monitoring of feedstuff. In this paper, we develop multiprocess discount
normal model with non-linear structure by incorporating the perturbation index
variable which determines the perturbation distribution. In Section 2, we develop
the recursive estimation for the multiprocess discount normal model with
parameter non-linearities. In Section 3, we study the proposed recursive
estimation for the generalized exponential growth model by using Monte Carlo
simulation study.

2. Recursive Estimation of the
-~ Multiprocess Discount Normal Model

In this section, we are concerned with the mutiprocess discount normal model.
We encounter several models which depend on parameter non-linearities in
applications. These models with parameter non-linearities can be written in the
following form.

Observation equation: y = H (B,)+w,

Evolution equation: 8 =g (B,_,)+7,>

where K () is a known non-linear regression function, g, () is a known non-
linear vector evolution function, w, and » are error terms. In these models, we
encounter difficulties with determining the posterior distribution of B, given y,



Multiprocess Discount Normal Model 31

since H () and / or g,(?) are non-linear function of B, and B, respectively.

Thus we suggest the linearization technique with dlscount matrix. The
multiprocess dynamic model is like the dynamic model in that the parameter
vector on subject to perturbation. However, in the multiprocess model the
distribution of the perturbation depends on the perturbation index random variable
at that time. The sequences of perturbation index variables are independent of
each other and each can be considered to be the outcome of a single multinomial
trial with known prior probabilities. The prior probabilities do not have to remain
constant over time. This allows prior knowledge by the forecaster into the model,
hence the forecasting system is very flexible. This multiprocess dynamic model is
expressed as follows.

Let 7 be the perturbation index variable at time ¢ .
P, =j)=n? for ;=12 k.
When I =7,

B =g1(Bt—l)+r’

where g (.) is a known non-linear vector evolution function, r, is the perturbation
vector, which is normally distributed with mean vector () and known variance-
covariance matrix RY. The variance-covariance matrix depends on the
perturbation index variable I, and can change over time. The observation
equation is given by

v =HB)+w

where A (.) is a known non-linear regression function mapping the j -vector B,
to the real line and observation error, w, are independent normal distribution w1th
mean () and variance W,

Ameen and Harrison(1985) introduced normal discount Bayesian models to
overcome some practical disadvantages associated with the dynamic linear model.
In practical problems, modelling the parameter change by introducing a
perturbation may not be appropriate. Instead of updating the parameter variance
matrix by adding the perturbation variance matrix, the normal discount Bayesian
model updates it by pre and post multiplication by a discount matrix. This also
has the same effect of increasing the variances, and in many cases modellers and
forecasters have a more intuitive feel for the appropriate discount matrix than for a
perturbation variance matrix.
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The assumptions of the dynamic discount normal Bayesian model are the same
as those for the dynamic linear model, except that if previous posterior conditional
distribution is

Bal¥) ~ NGB,V
then
(B,1%_))~ N(GB,_.,B,GV, GB,)

where G is the known matrix of dynamic coefficient at time ;and B, is the
discount matrix, a diagonal matrix of discount facor. The effect is similar to that
of adding a perturbation in the dynamic linear model. The mean of the subsequent
prior distribution is unchanged, and the variance matrix has been inflate to allow
for increased uncertainty. However, the variance matrix inflation is multiplicative
instead of additive, and this produces some slight differences.

The multiprocess extension of this model allows the discount matrix to have one
of f possible values B®",---,BW, depending on the value of the discount index
variable J . The discount index variables {1, } are an independent sequence of
mult1nom1al random trials with known prior probablhtles P, = j)=nY which
may change over time.

2.1 Recursive Estimation

The initial conditions for the recursive estimation at time ;require the %
posterior conditional dlstrxbutxons Bl =Y )~ NP, VD) and the

posterior probability g =P(,_ =ilY_)- The notation Y=Y 0 d
denotes all the observatlon up to and 1nc1ud1ng Vi

For the structure of parameter non-linearities, we suggest the linearization
technique. Various linearization techniques have been developed for dynamic
non-linear models. The most straightforward and easily interpreted approach is
the one that is based on the use of first order Taylor series approximations to the
non-linear regression and evolution functions. This requires the assumptions that
both () and g O be differentiable functions of their vector arguments. A
taylor series expansion of the evolution functions about the estimate of B,.» B @
gives

g(Bl 1) gl(B(’))+G(BI 1 B(’)

+ quadratic and higher order terms in elements of (§,_ — @

where G, is the known , x  matrix derivative of the evolution matrix evaluated
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at the estimate B f'_)l ,

og,(B,.,)
B,

Assuming that terms other than the linear term are negligible, the linearized
expression of the evolution equation becomes

Br chr(éfi)l)'*'Gt(Br—l _éf?l)+rr
=h, +GrBt—l +7,

where h =g/ f")l) —G,Bfi)l is also known.

G, =1 ]

B,-1=|3$'-)|

(2.1)

Proceeding to the observation equation, similar ideas apply. The non-linear
regression function is linearized about the expected value a, =h +G,p®" for B,s

HP)=H(a)+F (B, -a,)
+ quadratic and higher order terms in elements of (B, -a,),

where F, is the known p -vector derivative of H, evaluated at the prior mean a,

E=[5H,(B,)] |
B, Ly

Assuming the linear term dominates the expansion, the non-linear regression
function is linearized as follows.

v =HB)+w, 0>
' L)

cht+E (Bt—al)+wt,
where f,=H\a,)-

Assuming (2.1) and (2.2) as an adequate approximation to the model, it follows
immediately that the usual multiprocess dynamic linear model applies in the
evolution and observation equations.

(1) Evolution Step

In this step, each of these g distributions is updated to time ; conditional on
I, = j, the perturbation index variable at time ; being equal to j for
j=12,--- k- Attime ; the prior, one-step forecast and joint distributions for
each I,_, and J are given as follows.

By using the discount matrix and evolution equation (2.1), the prior distribution
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of g given =i =jandy_is

(Bl =00, = 1Y) ~ NBED,C0), @3)
where B < b, + G, and ¢ = BYGYYG, BY .

By using the prior distribution (2.3) and the observation equation (2.2), the one-
step forecast distribution of  given J  =,7, = jand y_ is

DM =61 = .Y )~ N(f, + F (B ~a), F, C/'F).
Then the joint distributioin of B, and y, given [, =i,/, =j and ¥_, is

(B’ lIl-l =i,1, =j,Y;_1)
Wi

Nl:( B J [ cd COIF ]:I 2.4
fi+F, (B9 -a,)) \F,C' F C“'F +W,

(2) Updating Step

In this step, we consider updating the prior distribution of parameter given
observation y .

By using the standard normal theory for joint distribution of B, and y in the
evolution step, (2.4), the posterior distribution of B, given | =i, I,=jand y
is

Bl =01, = j,X) ~ N(B V), 2.5)
where

(0 =B+ CEOE(F, COEY (5, ~(f, + F, (B ~a,))

o>

and
’ ’
Gy _ 0.)) ) G.J) o y-1 G.J)
VoD = CP ~ COF,(F, C*PF) F, CO-.

To complete the development of the recursive estimation, we need to determine
the posterior probabilities of the perturbation indices given the present
observation. This probability is called the posterior index probability. Using
Bayes theorem, we have
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B =PI, =i,1, = j|Y)

_n(_[)q(l)l Pyl =i,1,=},Y )
- .
P(y|Y._)

(3) Collapsing Step

To proceed to time f4], we need to remove the dependence of the joint
posterior P(B,|Y)) on possible models obtained at time ;_1. If we evaluate
P(B,|Y,) to time ¢4 directly, the mixture will expand to %3 components for
B,,» dependently on all possible combinations of l,=k, I,=j and 7.
However, the principle of approximating such mixtures by assuming that the
effects of different models at ;1 are negligible for time s +1 applies. Thus, in
moving t0 (¢ +1), (k x k)component mixture P(B, |Y) will be collapsed over
possible models at ;1. Posterior distribution of B given I =j and Y, and
mean vector and variance-covariance matrix of B, given I =j and Y at tlme t

are given as follows.

By using the posterior index probability at time ;, the posterior distribution of
B, given I, =jandyis

k
B =50)=2@") B fB M =01, = ),

where q(.l) —_ Z P(’ I)

By using the technique of approximation of mixture, the mean vector and
variance-covariance matrix of B, given I, =jand y are

B(n Z(q Ny pe /)B(u) (2.6)
and
V,U) = i(q’(j))—l P(i'j)[V(i’j) +(é(i,j) _ ﬁ(j))(éfi,j) _ ﬁ(j))r],
i=1

respectively. We are now the same position as when we started the recursive
estimation, so we are ready to repeat the process when the next observation
becomes available.

2.2 Forecast Distributions

At time ¢, the distributions required by the forecaster are the distributions of
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B, =i,1,, =jY) and (y |I =il =jY). Attime ;, the forecast
distributions for each I, =i and J = are given as follows.

The forecast distribution of B,, &iven I =il =jand Y is

1+1

(BIHIII =i’11+1 =j’X) ~ N(Bfi’{)’c(tj))’

1+1

where B¢/ =, +G,, B and C% = BUG, V9G, B

t+1] t+1 M+l t+1 141 °

=jandY’is

1+1

The forecast distribution of Vi given 1 =il

(yl+l|11 = i’11+1 = j’X) ~ N(.fnl + F;+1 (Bf:lj) —_al+1)’ F;+l C(i’j)F + W+l )

t+1 t+1 t

The unconditional forecast distribution of Viur given I, =il

1+1

=jandY,is

P(yalh) =

k
i=1

> aOn Py, M, =i,1,, = j.X).

k
j=l

3. Monte Carlo Simulation Study

In this section, we study the performance of the Bayesian estimation proposed in
Section 2 via Monte Carlo simulation for the multiprocess discount normal model.

We consider a member of the generalized exponential growth models by
Gamerman and Migon(1991). Let y,» t=12,---,n, be a time series of interest.
The model is defined as

(ytIBI) ~ N(B,,V(B,)O’z),

where = B* with non-linear evolution equations
p '3 '

“t = “I;l +Y -1 + wrl’
YI =¢I—1Y -1 +wt2’
¢r =¢r-l +wt3'

u, is the level, y , is the growth in the level and ¢, is the damping factor for the
model. The non-linearity in the model is due to multiplicative effect of ¢,. The
simulation study will be carried out with the following example on an artificially
generated time series. The time series consists of 80 normally distributed random
variables and the following change pattern. The time series data start with no
change, but there is an outlier of at observation 12. At step 21, the growth change
starts and to be continued at step 30. At step 31, no change starts. At step 51, the
damping factor change starts and to be continued at step 50. At step 61, level
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change starts and to be continued at step 80, but there is an outlier of at
observation 72.

The forecast and the actual observations are shown in Figure 3.1. The forecast
errors are shown in Figure 3.2. From these figures, we suggest the following
properties.

(1) The developed models give good estimates by using past data as well as
presentdata when the time series is in a stable pattern.

(i1) The developed models are not sensitive when an outlier occurs.

(ii1) The developed models react quickly when a change occurs, but when a
changeoccurs, the forecast error is sligtly increasing.
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