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Joint Estimation of the Qutliers Effect

and the Model Parameters in ARMA Process
Kwang Ho Lee! and Hye Jung Shin!

Abstract In this paper, an iterative procedure, which detects the location of the
outliers and the joint estimates of the outliers effects and the model parameters in
the autoregressive moving average model with two types of outliers, is proposed.
The performance of the procedure is compared with the one in Chen and Liu(1993)
through the Monte Carlo simulation. The proposed procedure is very robust in the
sense that applies the procedures to the stationary time series model with any types
of outliers.

1. Introduction

In time series analysis, observations are often subject to the influence of
nonrepetitive exogenous intervention - for example, strikes, outbreak of wars,
sudden change in the market structure of a commodity, unexpected changes if
certain conditions on physical system, and so forth - and as a results some
observations become outliers. Outlier detection and the development of method of
paramieter estimation insensitive to the presence of outliers are important in
statistical practice.

Several authors including Fox(1972), Abraham and Box(1979), Tsay(1986),
Chang et al.(1988), Chen and Liu(1993), Abraham and Chuang(1993) have
considered the problems that detects the location of the outliers and estimates the
model parameters and the outlier effects. A common approach to deal with
outliers in time series analysis is to identify the location and the types of outliers
and then apply the intervention models discussed in Box and Tiao(1975). It is
known that the iterative procedure proposed by Chang et al.(1988) is quite
effective in the problem that detects the locations and estimates the effects of the
outliers.

Dermnpster et al.(1977) suggested the Expection-maximization(EM) algorithm, a
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method of iterative searching for the maximum likelihood estimate(MLE) in the
context of incomplete data. Abranham and Chung(1993) developed an estimation
method which was devoted implementation of the EM algorithm in the context of
time series models with outliers. Chen and Liu(1993) used also an iterative
procedure to obtain the joint estimates of model parameters and outlier effects.
They considered four types of outliers and issues of spurious and masking effects
were disscussed.

In this paper, we proposes an iterative procedure to detect the location of the
outliers and to obtain the joint estimates of the model parameters and the outliers
effects in the autoregressive moving average model (ARMA) with two types of
outliers. We will show that the procedure performs well in terms of detecting
outliers and estimating the model parameters jointly, and compare the
performance of the proposed prpcedure with the ones of the conditional least
square method and with the ones of the procedure proposed by Chen and
Liu(1993) under the considering model through the Monte Carlo simulation
method. ‘

In Section 2, two types of outliers are defined.Because of most of all outliers
occuring in the time series analysis are represented by the linear combination of
these two types of outliers, the two types of the outliers are considered in the
paper. To detect the locations of the outliers and to estimate the model parameters
and the outliers effects jointly, an iterative procedure is proposed in Section 3. In
Section 4, The performance of the proposed procedure will be compared with the
conditional least square procedure and with the one given by Chen and Liu
(1993) through the Monte Carlo Simulation method. Finally some remarks and
conclusions will be given in secion 5.-

2. Types of Qutliers

In this paper the proposed procedure may be applied to the stationary ARMA
process. But to simplify the presentation, we consider only AR(p) process.
Let {Z} be a stationary AR process with order p defined by

¢(B)Zl':a,’ t=0,i1:i29”'9 (21)

where ¢(B) is —¢,B—¢,B’—--—¢,B” and B is backshift operator such that
Bz, =z, ;- The roots of ¢(B) are outside the unit circle, and g, is a sequence of
independent and identically distributed normal random variables with mean zero
and variance g?.
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Here we introduce two types of outliers which are often occurred in the time
series process. The one is innovational outlier and the other is addtive outlier.
These types of outliers are discussed by Fox(1972) and Abraham and Box(1979).

Suppose that an outlier occurs at ; = T in the given time seires process { Z}
Define a new process {r} as follows :

Y, = Z, +3A(B), 22)

where { z} follows an AR(p) process described in (2.1), § represents the
magnitude of the outliers in the process {Z}. And ¢_is atime indicator signifying
the occurrence of the ourlier which is defined as

0, t=T,
1, t=T,

1

A(B) in (2.2) denotes the dynamic pattern of signifying the occurence of the »
outlier. That is, if 4(B)=1/¢(B) then (2.2) can be representd as follow

(B)Y, =, +5E, 23)
If A(B)=1 then (2.2) can be represented as
Y, =Z+3E,. (2.4)

In the case of A(B)=1/¢(B), the time series process {y} is called an
innovational outliers (I0) model and in the case of 4(B)=1, we refer to {y} asan
additive outliers (AO) model. In general, most of all outliers in the time series data
are represented as the linear combimation of these two types of outhers Thus we
only consider these two types of ourliers in this paper.

3. Joint Estimation of the Patameters and the Qutlier Effect

Suppose that ¥ =(y,,--,y,) is a vector of observations and each ¥, is
associated with one of two unobserable states(the outlier state and the non-outlier
state). Thus there is an unobserable indicator vector & = (&,,&,,---,& Y whrer g, is
as defined in section 2. In fact, {£ } is considered as a sequence of Bernoulli
ramdom variables with

PE,=)=aq, PE,=0)=1-a, t=p+1,--,n

where, o is small prior probability. Further, assume that & =&, =---= & »=0,
that is, the first p observations are not ourliers. For the notational conveniences let
¢=(¢1:¢2""s¢p)” K)z(yl’yzf"ayp)” Yz(yp+1’yp+29"'ayn),> r=2:’=p+1§,,
&= (&p+l’§p+2"”’§n)"
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yp ypvl “' yl
V - yp+1 yp ';' yZ
yn—l yn—-Z yn—p
and
( E‘:p gp—l é]
U: E.!p-}»l gp 5.12
én-—l én-.’l gn-p/

Let p represent a vector of parameters. y is refered to as the incomplete data
and X =(Y,Y,&) as the complete data. We apply the basis idea behind the EM
algorithm that is to maximize the incomplete data likelihood L(Y,B) by
maximizing the conditional expectation of the complete data likilihood L(X,B)
given the incomplete data y in each iteration.

The complete data likelihood given the initial values z,z,,--,z, is equivalent to
that given by ¥, =(3,,¥,."*,¥,)’, can be expressed by

L(X.B.alk) = f(Y,g[B,a. 1) G.1)
= f(Y1E.8,0, 1) f(Elor, ) '

where B’ = (a’,6%,8)'. Here we are considering only the likelihood distributional
on the initial valued y, . Since distribution of g 1s not dependent of g, (3.1) can
be expressed as '

L(X.B,olY)= f(V.EB,at T;)
™™ P exp[—(25°)" {S($) - 26D(¢) 3.2)
+8°C() o (1 - )",

where S(¢)=(Y-Voy(Y-V$),C($)=(E—UpY(£ - Up), D(b) = (¥ -V
(- U9).

Detection Step

From the E step of the EM algorithm we can approximately estimate the
parameters ¢ and § , say, & and B respectively. Since the ¢, s are Bernoulli trials,
the expectation of ¢ , given (16,6:&) and Y at the (k+1)th iteration is in general

E*D = E(E Y, Y,B,6),
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where the expectation is taken over the joint distribution of given G = (¥,,8,4)
and Y. Hence

Zi,f(Y,élG)
Zf(Y &lG)
Zf(Y,i,i,,é. =1G)

_ %o

Zf(Y,ilG)

g(kﬂ)

where € is the vector without the element ¢ and f(y £|G) is as givenin (3.2)
with (B, oc) replaced by (B®,a®) . Thus we take

Zf(Y £.8, =EW.E, =1|G)
Zf(Y 555, E.."" §,—1|G)+Zf(Y &8, =E0,E=0/G)

i(k+1) ~

where ép = (é!—p’.'.’§I—1’§l+l’...’§l+p) and & = (§p+1>'"9§1—p+1’§r+p+13'",E.m)-

It can be simplified as

EMD =(1+h)",  t=p+l-n, (3.3)

1—g®w A (k)é(k) A
h, = G® »exp{noj(k) {5(“( g(k)) ( y,(k))}}

A® =14 §02 4§02,

80 =37 B0(E +E%)
j’:(k) = Z; ¢(jk)(yl—j + y/+j)’
DI

= (k) ’

$% =
! M
n ~
i Dyl
(X.(k) = 1+p+1 ,
n—p

We obtain ¢ that the value means outlier exist or not at time point £. So we can
detect the outliers by the values of ¢ 's.

where

j = ],2,...,p.



46 Kwang Ho Lee and Hye Jung Shin

Estimation Step
Suppose that the series Y, is subject to m interventions at time points toty, et
resulting in various types of outliers. The model for y can be expressed as

1
_~af’
o(B)

where [ (B)= 1/¢(B) or L(B)=1 Without distinguishing notations of the
estimated and the true paramaters, the residuals {¢ } by fitting an AR(p) model to
Y may be expressed as

Y =3'8,L(B)E, + (3.4)

6 =38 0(B)L,(B)E, +1,

Jj=

~

8’—_—6,

(3.5)

If the effects of outliers and their locations are available, then we can adjust the
outlier effects based on equation (3.4) and subsequence estimate the model
parameters. On the other hand, when the model patameters are known, we can °
identify outliers and estimate their effects using equation (3.5). It is difficult, if not
impossible, to acheive our stated goals in a single step.

Now we are led to the following procedure to handle situation in which there
may exist an unknown number of IO's or AO's. The procedure begins with
modeling the original series {y} by supposing that there are no outliers. Then the
outlier detection step and the parameter estimation step will be alternatively
followed.

STEP 1. Compute the maximum likelihood estimates of model parameters
based on the original and obtain ¢ by (3.3). Then we identify the outliers location
in the step. ‘

STEP 2. Suppose that m time points ¢ ¢, ..., are identified as outliers
locations. The outliers effects 5j's can be estimates jointly using the multiple
regression model described in (3.5), where {¢} is regarded as the output variable
and [ ( B)t} are the input variables.

STEP 3.” Obtain the adjusted series by removing the ourliers effects, using most
recent estimates of § 's at step 2. Compute the maximum likelihood estimates of

the model parameters based on the adjusted series.

4. Monte Carlo Simulation

In this section, we investigate the performance of the conditional least square
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estimates (CLSE), Chen & Liu's estimates (C&LE), and the proposed estimates
(PPE) through the Monte Carlo simulation.

Three time series data with outliers were generated using the following AR(1)
model,

(a)yt = Zl + 8&1 and ZI = ¢Zl—l + al’ (AO)

b))y, =¢y,(a,+8E,), (10)
(©)y, =z, + A(B)dE,, (Mixed)

where

: 0, t#t,t), 1,
TN, r=t,t,t,

1/(1-B), ify, is IO,

A(B)=
(&) {1, if y, is AQO,

and {g } is a white noise sequence with mean zero and variance one.
In a case of AR(2) model, three time series with outliers each was generated
using the following models,

(a)y: =2z +8E.:1 and

Zt = ¢1Z1—1 + ¢2Z,_2a,, (AO)
By, =4y, +4,¥,5(a,+8E,), (10)
(c)y, =z, + A(B)3E,, (Mixed)

where ¢ and {a,} are same as AR(1) and

1/(1-,B—¢,B%), ify, is 10,
1, if y, is AO.

The same sequence {; } is used for each of the three models. It should be also
noted that some initial observations were already discarded to aviod transient
starting effects.

At frist we generate the random sample of size N=100 from the AR(1) process
with the parameter ¢=0.3(¢=0.6) and the outliers are occured at the time t=35, 59
and 87 with the effects §=5. Finally we also consider the AR(2) process with the
parameters ¢ =0.5 and $,=0.3(¢,=-0.4 and ¢,=-0.6) with the same location of the
outliers and the same outliers effects.

Simulations were performed to investigate the behaviours of CLSE, C&LE and
PPE. For the each model (a) - (c¢) all given in case 1 and 2 are repeated times. The

A(B) = {
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average and the mean square error from these repetitions are shown in table 1,
table 2.

Through the Table 1 we can see the followings. For $=0.3, 0.6, the proposed
procedure estimator was better than CLSE and C&LE regardless the ourliers
types. Also the outliers effects were estimated appropriately.

From the Table 2 we know the following facts. For ¢,=0.5, ¢2—0 3 and ¢,=-04,
¢,=-0.6, as AR(1) model, the proposed procedure estimator ¢ and ¢ were better
than CLSE and C&LE, regardless the outliers types. Also the outliers effects were
estimated appropriately.

5. Remarks and Conclusions

In this paper, we deal with the joint estimation problem in the autoregressive
process with the two types of outliers.

We know that the proposed procedure is very effective in the sense of bias and
mean square error. Regardless of the types of the outliers, the procedure can be
applied to detect of the location of the outliers and to jointly estimates of the
model parameters and the outliers effect. We recommand that you use this
procedure to estimate the outliers effect and the parameters in the autoregressive
time series model with any types of outliers.

In the autoregressive moving average process with the same condition given in
this paper, the iterative procedure becomes more complicated but the outlier
detection problems and the estimation problems of the outleirs effect and the
model parameters can be dealt as the same manners.

“Table 1
Comparisons of the CLSE, the C&LE and the PPE(N=100, §=5, =35,59,87)
1)¢=0.3

CLSE C&LE PPE '
&’ &’ ¢ ¢’ ¢ G’ B35 B B,
181 | 1.831 [ 283 | 1.061 | .293 | .998 | 5.006 | 4.999 | 5.000
(.008) | (.049) | (007) | (.040) | (008) | (.018) | (.008) | (.010) | (.009)
1003) A80 | 1.845 [ 281 | 1.074 | 299 | 1.056 | 4.993 | 4.987 | 5.014

(.008) | (.065) | (007) | (048) | (009) | (.026) | (.010) | (.009) | (.012)
AO(2)} 175 | 1827 | 275 | 1.066 | .294 | 1.054 | 5.000 | 4.999 | 4.984
10Q1) | (008) | (050) | (.006) | (.044) | (008) | (022) | (010) | (009) | (.059)
AO(1) | 178 | 1.847 | 282 | 1.083 { .304 | 1.064 | 4.988 | 5.003 | 5.001
10(2) | (008) | (048) | (.006) | (048) | (008) | (.026) | (009) | (.008) | (.008)

AO@)
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2)$=0.6

CLSE C&LE PPE

d; 62 d’; 6-2 (1; 62 é35 859 S87
AOG) A45 | 1.979 | 562 | 1.363 | .587 | 1.002 | 4.994 | 5.007 | 4.993

(.006) | (.061) | (.002) | (.141) | (007) | (.025) | (O11) | (.009) | (.009)
10(3) | 441 [ 1940|362 [ 1311 | 588 [ 1253 [4.982 | 4983 | 4.980

(.006) | (.141) | (.002) | (.114) | (006) | (.030) | (009) | (011) | (.009)
AOQ) | 437 | 1957 | 561 | 1.304 | 581 | 1.260 | 4.984 | 4.964 | 4.983
10(1) | (005) | (051) | (001) | (.120) | (.006) | (031) | (012) | (.112) | (.009)
AO() | 436 | 1.971 | 559 | 1.339 | 597 | 1.266 | 4.976 | 4.991 | 4.993
10(2) | (.006) | (.060) | (.002) | (.129) | (.005) | (.036) | (.009) | (.008) | (.008)

Note. ( *) represents the mean square error (MSE)

Table 2
Comparisons of the CLSE, the C&LE and the PPE(N=100, § =5, 1=35,59,87)
1)¢1=0.5, ¢2=0.3
CLSE C&LE PPE

O | 6 [ S| 6 |9 [ ] 0| 6|6 |5,]8, |85,
392 |1 260 {1.792| 471 | 273 |1.179] 497 | 279 | .974 [4.991]5.013(4.996
(.012)](.010)[(.067)|(.011)|(.010)|(.142)[(.010)[(.010)|(.022)|(.023)|(.022){(.020)
103) 385 | 258 11.8671 466 1 271 11.2291 502 { 273 1 .976 14.99814.99115.009

(.009)[(.009){(.079){(.013)](.009)|(.187)|(.011){(.010)[(.023)|(.020) {(.022)|(.023)
AO2)| 392 | .259 |1.827] 481 | .266 {1.163} .495 | 277 | 984 [4.999]5.000]4.996
10(1)](.009)](.010)](.075)](.012)(.010)|(.179)|(.010)|(.009)] (.022)|(.021)](.022)](.023)
AO(1)] 393 | .259 |1.824] 482 | 269 [1.135] .498 | 284 | .992 14.994(5.01315.017
10(2)[(.010)](.010)|(.079)|(.012)|(.010)[(.145)|(.008){(.010)](.022)((.022)|(.025){(.022)

2)¢]=-O.4 ¢2=-0.6
CLSE C&LE PPE

O | 6, [ 9 |0, |6 |6 |6 |6 |5,]8,]5,
-.169(-32111.984|-355(-.53411.291|-.385|-.578| .980 |4.988(4.992(4.993
(.012){(.013)](.091)}(.010)(.009)|(.412)[(.007)|(.007)|(.018)|(.122){(.070)|(.072)
103) -216(-.38211.725{-352{-.52111.303}{-.380}-.583| 978 14.971[4.987]4.958

(.010)[(.010){(.076)((.009)|(.010)|(.310)|(.008)[(.007){(.022)|(.120)(.021)}(.222)
AO(2)} -.2041-370|1.765(-.349 [-.531[1.239(-.390 | -.584 | 976 [4.98614.997(4.984
10(1) | (.011)](-011)|(.087)}(.010)}(.009)|(.290)}(.007)|(.008)|(.212)|(.071){(.025)|(.018)
AO(1)|-.197 | -.343 11.901}-.366 |-.541]1.238|-.389[-.592| 979 [4.989(4.974]4.984
10(2) [( 610){(.012)|(.088)[(.009)[(.009){(.250)|(.007) [(.007)[(.212)|(.076)|(.074)|(.070)

Note. ( ») represents the mean square error (MSE)

AO(3)

AO(3)
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