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Let A denote the class of functions f analytic in the open unit dise E = {z €
C| |z| < 1} normalized by f{(0) = f'(0) =1 = 0. Then f € A has the expansion
flz)=z+ Zr;z arz®. We define I"f(z) = z + z:iz k™ "axz* for all integer values
of n. We observe that I™"f(z) =2+ ,_, k"axz* = D" f(z) where D is an operator
defined by Salagoan. In this paper we define some new classes of functions using the

differential operator I™ and examine their properties.

Introduction

Let A be the class of functions f satisfying f(0) = f'(0) — 1 = 0 and
analytic in the unit disc E = {z € C| |z| < 1}. Then f € A has the expan-
sion f(2) = z4+ 332, arz*. We define I* f(2) = 2+ T2, k~"ax 2~ for all
integer values of n. We then observe that I™™f(z) = z + 1.2, k"az2* =
D™ f(z) where D is an operator already defined in [7]. Also I71f(z) =
£f'(2) = D f{z) and (1" f(2)) = I f(2),

Definition. Let f and g be two functions analytic in E with f(z) =
250 a;z' and g(z) = 3 32gb;jz’. Then the Hadamard product or the
convolution of f and g is given by (f * g)(z) = 272, a;6;27. The differ-
ential operator I™ can also be seen as a convolution of two functions. Let
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n times
fEA Then I"f(z) = ks k*---k+f(z) where k(z) = 2+ 122, k7 12F =
108(112)-

In this paper we define some new classes of functions using the differ-
ential operator I™ and study their properties.

We state below two lemmas which are frequently applied in the sequel.
Lemma A [1]. Let B,y € C and h be a conver univalent function in E
with h(0) = 1 and Re(Bh(z)+7) > 0,z € E. Let p(2) = 14p1z+p22%+---.

Then p(z) + -(ﬁ—;’(’%%{—ﬁ < h(z) implies p(z) < h(z).

Lemma B [2]. Let 8,y € C. Let h be a conver univalent function
in E with h(0) = 1 and Re(Bh(z) + v) > 0,z € E, and let ¢ be an
analytic function in E with ¢(0) = 1 and ¢(z) < h(z),z € E. Ifp(z) =
1+ p1z+ p22® + -+ - is analytic in E then p(z) + (3;’(’;)11) < h(z) implies
P(2) < A(2).

Main Results

Definition 1. Any f € A with f(2)f'(z)/z # 0 in E is said to be in
S («) if it satisfies

g (w_gf(z) + (1 — )" f(2)

ol Tg(z) + (1 - a)I"g(2) ) >0in B

where g(z) = (f(z) - f(~2))/2.

When a = 1,7 = 1 we get a class defined by Sakaguchi [6], and when
n = 1 we obtain a class defined by Radha [3].

Theorem 1. Let f € 5%(a). Then

al"%g(z) + (1 - a)""1g(2)
e ( al™1g(z) 4+ (1 - a)lng(z) ) =0

Further if 0 < a < 1,Re(I™ 'g(z)/I"g(z)) > 0.
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Proof. Consider

al"?g(z) + (1 — a)I"g(2)
al™1lg(z)+ (1 - a)l™g(z2)
al"2(f(2) = f(=2) + (1 — )™ (f(2) = f(—2))
2(al™"1g(z) + (1 - a)I*g(z))
_ a7+ (- (2) el f(=2)+ (1 - )" f(-2)
T Aalmlg(z)+ (1-a)lg(z))  2(al™'g(z) + (1 - a)l"g(z))

Now

1 o0 o0
gz) = 3 [z - Zakzk = ((—z) + Z ak(—z)k)}
k=2 k=2
= z+ Y ay_12°*""is an odd function of z.
k=2

Hence we see that
Re (aIn—zg(z) + (1 - a)p—lg(z))
al*=1g(z) + (1 - a)I"g(2)
— P (aIn—zf(z) + (1 — Q)I"—lf(z) 4 a]“‘zf(—z) + (1 _ a)f”_lf(—z))

2Aal*1g(z) + (1 - a)l"g(z)) * 2(al*g(z) + (1 - a)I"g(2))
Re(H21609)

2
al"2f(2) + (1 = )"\ f(2)
2(al"1g(z) + (1 - a)I"g(2))

I

where ¢(z) =
Since f € S7(a).
Let R = sup{r|I"g(z) # 0in 0 < |z| < r}. We set

I"lg(2)/1"g(z) = p(z);

hence
I"lg(2) = p(2)I"g(2).
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Differentiating this with respect to z and then multiplying the equation
by z we get

(1" 1g(2)) = 2(I"g(2)p(2))".
Since I"1f(2) = 2f'(2),

I I g(2)) = 20/ ()" g(z) + p(2)T 1 (1" g(2));

or
I""2g(z) = 2p'(2)I"g(2) + p(2)" ' g(2).
Thus

Re ) @' ?9(2) + (1 - a)"g(2)
al™=1g(z) + (1 - a)l"g(z)

~ Re { azp(2)I"g(2) + ap(z)["'g(z) + (1 - O)IH_IQ(Z)}

al"~1g(z) + (1 — a)I*g(z)

= Re {p(_z)+ Rj)p-ig—zl)%“} >0

by the first part of the theorem.

Applying Lemma A with h(z) = (1+ 2)/(1 — z), we have Rep(z) > 0
provided a < 1.

That is whenever a < 1 and f € S™(a),Re (I""1g(2)/I"g(z)) > 0 in
|z| < r. Hence I"g(z) is starlike in |z| < r or I"g(z) is univalent in |z| < 7
and cannot vanish in |z] = r < 1.

Thus we conclude that R = 1 and the proof is complete.

Theorem 2. Let f € S7!(a) then f € §7(a).
Proof. f € S?~(a) implies that f satisfies

al"3f(2)+ (1 — a)"2f(2)
e { al™2g(z) + (1 — a)I"1g(z) } 4

where g(z) is defined as before. Let

al"2f(z) + (1 - )" f(2)
al"1g(z) + (1 - a)I"g(z)

p(z) =
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and
al*? ( )+ (1 =)™ 1g(2)

al"1g(z) + (1 - a)I"g(z)

q(z) =
Then
g(z)(al"g(z) + (1 — a)l"g(2)) = al"*g(z) + (1 — )" 'g(2).

Differentlatmg this with respect to z and multiplying by z (noting that
2f'(z) = I71 f(z)) we get

2¢'(z)al" g(2) + (1 - a Wg(z)) + g(z)(al™%g(z)+ (1 - a)I“"lg(z))

=al"%g(z) + (1 — a)["?g(2);

or

z¢'(2) ) al™3g(2) + (1 — )™ %g(z2)
Re ( 4) +4(2)) = Re (arn-zg(zml —a')fﬂ-‘g(z)) >0

by Theorem 1, for f € §271(a). Now an application of Lemma A with
B = 1y=10 and ”lz)= H" gives Reg(z) > 0 in E.
Also

p(2)[al"g(2) + (1 — a)I"g(2)] = al" 72 f(2) + (1 — )" f(2).

Differentiating this with respect to z and noting that zf'(z) = I"! f(2)
we have

2p/(2)[al™ g(z) + (1 — a)I"g(2)]
+p(2)I ol g(2) + (1 — a)I"g(2)]
= I'l[aI"‘zf('z)+(1—a)]“‘lf(z)];

or

2p/(2)[al"g(2) + (1 — a)I"g(2)]
+p(2)[el"*g(2) + (1 — a)I"1g(2)]
= al"f(z) + (1~ )" f(2)].
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This yields

ol f(2) + (1= "2 f(z) o 2p(2)

al"=2g(z) + (1 - a)[*~1g(z) ~ q(z)

Since f € S?'(a),Re(p(z) + zp'(2)/q(z)) > 0 and an application of
Lemma B gives Rep(z) > 0 and the theorem is thus proved.

Theorem 3. The inclusion relation S7(a) C S}(0) is satisfied for 0 <
a<l.

Proof. Let f € Sy (a). We set

ik | ) SR

I"g(z)
where g(2) = (f(2) — f(-2))/2.

From theorem 1 we infer that Re ¢(z) > 0. Now

al™2f(2) 4 (1 — a)I™1f(2)
al™~1g(z) + (1 - a)I"g(2)
I apl™g(2)] + (1 — a)p(2)K"g(2)
al*=1g(z) + (1 — a)I"g(z)
ap(2)I"g(z) + azp/(2)I"g(2) + (1 — a)p(2)I"g(=)
al"~1g(z) + (1 — a)l*g(z)
zp'(2)

s g(z) + L2

[

I"lg(z) _
W = ¢(2),

Since f € S} (a),
ZAC

Re p(2) + ——w—
g(z) + =2

An application of Lemma B gives that Re p(z) > 0 if a < 1 thereby
proving the theorem.

Theorem 4. Let f € S («). If F is defined by the equation

1 = b
F(z)= Z;Elr’a—-l,/; ta"2f(1)dt
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then F € ST (a) for0 < a < 1.
Proof. From the definition of F(z) we get

1 z
71FG) = - [ (.
a Jo
Differentiating with respect to z,

() 4 (o —1)2572F(2) = —25724()

That is
azF'(2) + (1~ 0)F(2) = f(2). (1)
Now
Q(Z) = f(Z) _2f(_z)
= %[azF'(z) +(1=a)F(z)— a(=2)F'(=2) — (1 — a)F(-z)]
= 2(P() - (~F(-2)+ L5 ) - P(-2)
= 3(e:G'(2) + (1~ a)G(2), (2

where G(z) = Ha)-Fi-o)

2
Also we can see that

1 %
G(Z) = alel—./(; ta 2g(t)dz.

By Theorem 1, g(z) # 0 in E — {0}; hence equation (2) implies that
[@zG'(2) + (1 — @)G(2)]/2 does not vanish in E — {0}. Using equation
(1) and (2) we get

al"2F(z)+ (1 - )" 1F(z) I 'f(2)

al"-1G(z) + (1 — a)I*G(z) ~ Ing(z) ~

Thus whenever f € S7(a), from Theorem 3 we have

Re{I"~" f(2)/1"g(2)}0.
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Hence F € S}(a)for0 < a < 1.

Definition 2. Any f € A with f'(2)f(z)/z # 0 in E is said to belong to
the class C?'(a) if it satisfies

QI"'2f(z)+(_l-a)I"“f(z) )
Re{ al™2y(z) + (1 — a)I"y(z) >0, z€kE,

where ¥:(2) = (&(z2) — ¢(—2))/2 for some ¢ € ST (a).
Theorem 5. Let f € C7?"Y(a). Then f € C(a).
Proof. f € C*!(a) implies that there exists a ¢ € S?(a) such that

al"f(2) + (1 - a)I""2f(z)
e {afn-w(z) L= a)f"“d-'{z')} >0

where ¥(z) = (¢(z) — ¢(—z2))/2. Let

aI"2f(z) + (1 — )" f(2)

2 = 190 + (1= a)l(2)

and
ol = al™2y(z) + (1 — a) " 19(2)
T T(2) + (1= ) I9(z)

By Theorem 1, % € S7(a) and hence Re ¢(z) > 0. Further we have
p()al" 1 P(2) + (1 — a)I"(2)] = al™ 2 f(2) + (1 — )™ f(2).
Differentiating with respect to z and using the relation =1 f(z) = 2 f(z)

we get,

29/ (2)[al" 71 P(2) + (1 = a)"(2)] + p(2)[el"2¥(2) + (1 — )" 4(2)]
= al"? f(2) + (1= )" 2 f(2)

Hence
(o) 4 ZC) _ &™) + (1= )" ()
7(z)  al"P(2) + (1 - a)"~1y(z)
Since f € C?Ya), Re {p(z) + %’-g-]} > 0 and now an application of
Lemma B gives Re p(z) > 0 and this proves the theorem.
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We now proceed to define two generalised classes of functins with
respect to conjugate points and study their properties.

Definition 3. Any f € A with f'(z)f(z)/z # 0 in E is said to be in
SM(a) if it satisfies

al"™?(2) + (1= )" (2)
Re{ al*~1g(z) + (1 - a)I"g(z) } =

where g(z) = (f(z) + f(2))/2.

When a = 0,n = 0 we get a class defined in [4]; when n = 0 this class
reduces to a class defined by S. Radha [5].

Theorem 6. Let f € S*(a). Then

aI"g(2) + (1 - )" 1g(2)
R‘*{ ol 1g(z) + (1 - )I"g(2) }> ’

where g is defined as above. Further if0 < a < 1, Re{I" 1g(2)/I"g(z)} >
0.

Proof. Consider

al"?g(z) + (1 — )" 1g(2)
al*=1g(z) + (1 - a)Ig(2)
al"?(f(z) + f(2)) + (1 — )" (f(2) + f(2))
2(al™"1g(z) + (1 — a)l™g(z))
al" 2 f(2) + (1 - )" f(2)
2(al™"1g(z) + (1 — a)l"g(z))
al"?f(2)+ (1 — a)I*! f(2)
2(al™1g(z) + (1 — a)lng(z))

(3)

We have

Il

o0
Z[ak-l“_?') + (1 - a)k~ ™ Ma, 2,
k=0

= (a2 4+ (1 -a)l""1)f(2)

aI™ % f(2) + (1 - )" (7))
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since a and k are reals.
Further, since g(z) = g(z) we get

ol )+ (1~ )" _ ") + (=)l /C)
Aal™Tg(z)+ (1= a)l"g(z)]  2al™g(z)+ (1 - a)l"g(z)]

Hence the right and side of equation (3) becomes

a2 f(z)+ (1 — )" f(z)  al™2f(2)+ (1 — a)I"1f(Z)
2[01“‘19(3)+_(1 —a)lng(z)]  2al*1g(2) 4 (1 - a)l"g(z)]
_P(2) + ¢(2)
- 2

_ ol i)+ (1-a) " (2
where ¢(z) = a,]n—!g()z)+(l—i]1"g(2() L

Since f € S7(a), Re ¢(z) > 0 and also Re ¢(z) > 0; this implies

al™2g(z) + (1 — a)I*g(2)
Re{ alm1g(z)+ (1 — a)l™g(z) }>0'

Let R = {supr:1"g(z) #0in 0 < |z| < r}. We set

I"1g(z)

Trgz) M)

and hence
"g(z)p(z)I"g(z).
Differentiating this with respect to z and nothing that =1 f(2) = 2f/(2)
we get
(1" 1g(2)) = 20/ ()" g(2) + pl(2)2(I"(9(2))',
that is
29(2)) = 2p'(2)["g(2) + p(2)I" " g(2).
Thus

Re 48" %9(2) + (1 — o) "g(2)
al**lg(z)+ (1 - a)l™g(z)
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— Re {a(zp( 9(z) + p(2) " 1g(2)) + (1 — a)p(2) ™ g( )}
al™1g(z) + (1 — a)I"g(z)

4G
e splz)+ —————3 >0
{ el z)+L1‘” }
by the first part of the theroem.

Now applying Lemma A with h(z) = (1 + z)/(1 — z) we have Re
p(2z) > 0 provided 0 < a < 1.

Thus Re {I""1g(2)/1"g(z)} > 0in|z| < R. Hence I"g(z) is starlike in
|z| < R or I"g(z)is univalent in |2| < R and cannot vanishon |z| = R < 1.
We conclude that R = 1 and the proof is complete.

Theorem 7. Let f € S (). Then f € S%(a).
Proof. f € 57 1(a) implies that

aI"f(2) + (1 — )" f(2)
I“{aﬁﬂmﬂ+wl—wpww@)}>°

where g(z) is defined as in Definition 3. Let

al"2f(z) + (1 — e)I" "' f(2)
al"=lg(z) + (1 — a)I*g(z)

p(z) =
and
(2) = aI”_zg(z) +(1- a)I”‘lg(z)

T T Ty + (1= a)lg(e)
Using Teorem 6 for f € S? !(a) and Lemma A, we can show that

Req(z) > 0 as in Theorem 2.
Now

p(2)2I" M g(2) + (1 = a)I"g(2)] = 2172 f(2) + (1 - )" £(2).
Differentiating this with respect to z and using the fact that I=1f(z) =
zf'(z) we get

2P (2)al" " g(2) + (1 — a)"g(2)] + p(2)[al"?g(2) + (1 = )" Tg(2)

= al" 7 f(2) + (1 - )" 72 f(2)
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Hence

al" P f(2)+ (1= )" 2f()| _ o (o
Re {a[“—zg(Z) oG (1 me a)I“‘lg(z)} =R {p( )+

Zp'(Z)}

q(z)

Since f € S7!(a) we see that Re {p(z) + %}%l} > 0 and an application
of Lemma B gives Re p(z) > 0 and thus the theorem is proved.

Theorem 8. The inclusion relation ST (a) C SH0) is satisfied for 0 <
a<l.

i lg(z 2)+f(2)
.PT‘OOf Let ﬁgyl = p(z) and I—I@?é)'l = q(z) where g(z) e ﬂ_-;Lf(_l
From Theorem 6 we infer that Re ¢(z) > 0. Now

al™2f(z) + (1 — )" f(2)
al*1g(z) + (1 - a)l"g(z)
al" N (p(2)"g(2)) + (1 — a)p(2)I"g(z)
alr=1g(z) + (1 - a)l*g(z)

ap(2)"g(2) 4+ azp'(2)I"g(2) + (1 — a)p(z)I"g(z)
al"1g(z) + (1 - a)I"g(z)

. zp'(2)

A+ q(z) + =2

f € S2(a) implies that Re {p(z) + —z—"ﬂ,z)_—a} > 0.

a(z)+-3%
Now applying Lemma B we infer that Re p(z) > 0 and the theorem
follows.

Theorem 9. Let f € S «). If F is defined by the equation

1 2 .5
]Ota F(t)dt

azl/a—-1

F(z)=

then F € S*(a).
Proof. From the definition of F(z) we get

P = éfo 132 f(t)dt.
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Differentiating with respect to z we obtain

_IF'(Z) + (— - l)z_‘zF(z) —z« =2F(z)

or
2F'(2)+ (1 - )F(2) = f(2). (4)
Also
o) = LAHTE)

= 1[azF'(z) + (1= a)F(z) + asF @) + (1 - a)F'(3)]

= —[GZ(F(Z + F'(2)) + (1 - a)(F(2) + F(2))]
= azG'(z)+(1—a)G(z), (5)

where G(z) = M Now g(z # 0in E — {0} by Theorem 6) and
hence azG'(z) + (1 — a)G(z) does not vanish in E — {0}. Also it is clear
that

G(z) = /Oz ta=2g(t)dt.

azl/a—-1
Using equation (4) and (5) we get

al"?F(z)+ (1- a)I*"'F(z) _I""!f(2)
ol 1G(2) + (= )I"G(z) ~ Trg(z)

Whenever f € S7(a), applying Theorem 8 we infer that F € S7(a) for
0<a<l.

Definition 4. Any f € A with f'(2)f(z)/z # 0 in E is said to belong to
the class C'(a) if it satisfies

Re al™2f(2)+ (1 — o)™ f(2)
oI T5(z) + (1 - ) T9(2)

}>0, z€E,

where ¥(z) = (¢(z) + #(3))/2 for some ¢ € S*(a).
Theorem 10. Let f € C*~(a). Then f € C"(a).
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Proof. f € C*~!(«) implies that there exists a ¢ € §7(a) such that

e { al™3f(z) + (1 — a)I"2f(z) } o

al"29(2) + (1 - )"~ 19(2)

where ¥(z) = (6(2) + 0(2))/2. We set

ey al™2f(z)4 (1 - a)I* 1 f(2)
P = Tam=19(z) + (1 - a)79(z)

and
e al"2P(z) + (1 — a)I"19(2)

I 19(2) + (1= )T 9(z)
From the definition of the function ¢ and by Theorem 6, we have Re
g(z) > 0. We have

P2l (2) + (1 - ) "9(2)] = aI" 2 f(2) + (1 — a)I"7' f(2).
Differentiating this with respect to z and using I7! f(2) = 2 f'(z) we get

2p'(2)ad" 7 p(2) + (1 = e)"y(2)] + p(2)[al"*(2) + (1 — )" 4(2))]
= al" 3 f(2) + (1 - )" 2 f(2).
This gives

(z) _ el"3() + (1 - a)I"2f(2)
PO ) T el 2() + (1= a) = 1y(z)"

Since f € C™(a), Re {p(z) + %’%?} > 0 and now an application of
Lemma B gives Re p(2) > 0 there by proving the theorem.
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