On Salagean- Pascu Type of Generalised Sakaguchi Class of Functions

L. Nalinakshi

Department of Mathematics, Stella Maris College, Cathedral Road, Madras - 600 086, India

R. Parvatham

Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chepauk, Madras - 600 005, India

(1991 AMS Classification number: 30C45)

Let A denote the class of functions f analytic in the open unit disc $E = \{z \in C \mid |z| < 1\}$ normalized by f(0) = f'(0) - 1 = 0. Then $f \in A$ has the expansion $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$. We define $I^n f(z) = z + \sum_{k=2}^{\infty} k^{-n} a_k z^k$ for all integer values of n. We observe that $I^{-n} f(z) = z + \sum_{k=2}^{\infty} k^n a_k z^k = D^n f(z)$ where D is an operator defined by Salagoan. In this paper we define some new classes of functions using the differential operator I^n and examine their properties.

Introduction

Let A be the class of functions f satisfying f(0) = f'(0) - 1 = 0 and analytic in the unit disc $E = \{z \in C \mid |z| < 1\}$. Then $f \in A$ has the expansion $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$. We define $I^n f(z) = z + \sum_{k=2}^{\infty} k^{-n} a_k z^k$ for all integer values of n. We then observe that $I^{-n} f(z) = z + \sum_{k=2}^{\infty} k^n a_k z^k = D^n f(z)$ where D is an operator already defined in [7]. Also $I^{-1} f(z) = z f'(z) = D f(z)$ and $I^m (I^n f(z)) = I^{m+n} f(z)$.

Definition. Let f and g be two functions analytic in E with $f(z) = \sum_{j=0}^{\infty} a_j z^j$ and $g(z) = \sum_{j=0}^{\infty} b_j z^j$. Then the Hadamard product or the convolution of f and g is given by $(f * g)(z) = \sum_{j=0}^{\infty} a_j b_j z^j$. The differential operator I^n can also be seen as a convolution of two functions. Let

(Received: 7 June 1993, Revised: 7 April 1994)

$$f \in A$$
. Then $I^n f(z) = \underbrace{k * k * \cdots k}_{n \text{ times}} * f(z)$ where $k(z) = z + \sum_{k=2}^{\infty} k^{-1} z^k = \log\left(\frac{1}{1-z}\right)$.

In this paper we define some new classes of functions using the differential operator I^n and study their properties.

We state below two lemmas which are frequently applied in the sequel. **Lemma A** [1]. Let $\beta, \gamma \in C$ and h be a convex univalent function in E with h(0) = 1 and $\text{Re}(\beta h(z) + \gamma) > 0, z \in E$. Let $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$. Then $p(z) + \frac{zp'(z)}{(\beta p(z) + \gamma)} \prec h(z)$ implies $p(z) \prec h(z)$.

Lemma B [2]. Let $\beta, \gamma \in C$. Let h be a convex univalent function in E with h(0) = 1 and $\text{Re}(\beta h(z) + \gamma) > 0, z \in E$, and let q be an analytic function in E with q(0) = 1 and $q(z) \prec h(z), z \in E$. If $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$ is analytic in E then $p(z) + \frac{zp'(z)}{(\beta q(z) + \gamma)} \prec h(z)$ implies $p(z) \prec h(z)$.

Main Results

Definition 1. Any $f \in A$ with $f(z)f'(z)/z \neq 0$ in E is said to be in $S_s^n(\alpha)$ if it satisfies

$$\operatorname{Re}\left(\frac{\alpha I^{n-2}f(z)+(1-\alpha)I^{n-1}f(z)}{\alpha I^{n-1}g(z)+(1-\alpha)I^{n}g(z)}\right)>0 \text{ in } E$$

where g(z) = (f(z) - f(-z))/2.

When $\alpha = 1, n = 1$ we get a class defined by Sakaguchi [6], and when n = 1 we obtain a class defined by Radha [3].

Theorem 1. Let $f \in S_S^n(\alpha)$. Then

$$\operatorname{Re}\left(\frac{\alpha I^{n-2}g(z) + (1-\alpha)I^{n-1}g(z)}{\alpha I^{n-1}g(z) + (1-\alpha)I^{n}g(z)}\right) > 0$$

Further if $0 \le \alpha \le 1$, $\operatorname{Re}(I^{n-1}g(z)/I^ng(z)) > 0$.

Proof. Consider

$$\begin{split} &\frac{\alpha I^{n-2}g(z) + (1-\alpha)I^{n-1}g(z)}{\alpha I^{n-1}g(z) + (1-\alpha)I^ng(z)} \\ &= \frac{\alpha I^{n-2}(f(z) - f(-z)) + (1-\alpha)I^{n-1}(f(z) - f(-z))}{2(\alpha I^{n-1}g(z) + (1-\alpha)I^ng(z))} \\ &= \frac{\alpha I^{n-2}f(z) + (1-\alpha)I^{n-1}f(z)}{2(\alpha I^{n-1}g(z) + (1-\alpha)I^ng(z))} - \frac{\alpha I^{n-2}f(-z) + (1-\alpha)I^{n-1}f(-z)}{2(\alpha I^{n-1}g(z) + (1-\alpha)I^ng(z))} \end{split}$$

Now

$$g(z) = \frac{1}{2} \left[z + \sum_{k=2}^{\infty} a_k z^k - \left((-z) + \sum_{k=2}^{\infty} a_k (-z)^k \right) \right]$$
$$= z + \sum_{k=2}^{\infty} a_{2k-1} z^{2k-1} \text{ is an odd function of } z.$$

Hence we see that

Since $f \in S_s^n(\alpha)$.

Let $R = \sup\{r | I^n g(z) \neq 0 \text{ in } 0 < |z| < r\}$. We set

$$I^{n-1}g(z)/I^ng(z) = p(z);$$

hence

$$I^{n-1}g(z) = p(z)I^ng(z).$$

Differentiating this with respect to z and then multiplying the equation by z we get

$$z(I^{n-1}g(z))' = z(I^ng(z)p(z))'.$$

Since $I^{-1}f(z) = zf'(z)$,

$$I^{-1}(I^{n-1}g(z)) = zp'(z)I^ng(z) + p(z)I^{-1}(I^ng(z));$$

or

$$I^{n-2}g(z) = zp'(z)I^ng(z) + p(z)I^{n-1}g(z).$$

Thus

$$\begin{split} &\operatorname{Re}\left\{\frac{\alpha I^{n-2}g(z)+(1-\alpha)I^{n-1}g(z)}{\alpha I^{n-1}g(z)+(1-\alpha)I^{n}g(z)}\right\}\\ &= &\operatorname{Re}\left\{\frac{\alpha z p'(z)I^{n}g(z)+\alpha p(z)I^{n-1}g(z)+(1-\alpha)I^{n-1}g(z)}{\alpha I^{n-1}g(z)+(1-\alpha)I^{n}g(z)}\right\}\\ &= &\operatorname{Re}\left\{p(z)+\frac{z p'(z)}{p(z)+\frac{1-\alpha}{\alpha}}\right\}>0 \end{split}$$

by the first part of the theorem.

Applying Lemma A with h(z) = (1+z)/(1-z), we have Rep(z) > 0 provided $\alpha \leq 1$.

That is whenever $\alpha \leq 1$ and $f \in S_s^n(\alpha)$, $\operatorname{Re}\left(I^{n-1}g(z)/I^ng(z)\right) > 0$ in |z| < r. Hence $I^ng(z)$ is starlike in |z| < r or $I^ng(z)$ is univalent in |z| < r and cannot vanish in |z| = r < 1.

Thus we conclude that R = 1 and the proof is complete.

Theorem 2. Let $f \in S_s^{n-1}(\alpha)$ then $f \in S_s^n(\alpha)$.

Proof. $f \in S_s^{n-1}(\alpha)$ implies that f satisfies

$$\operatorname{Re}\left\{\frac{\alpha I^{n-3} f(z) + (1-\alpha) I^{n-2} f(z)}{\alpha I^{n-2} g(z) + (1-\alpha) I^{n-1} g(z)}\right\} > 0$$

where g(z) is defined as before. Let

$$p(z) = \frac{\alpha I^{n-2} f(z) + (1-\alpha) I^{n-1} f(z)}{\alpha I^{n-1} g(z) + (1-\alpha) I^{n} g(z)}$$

and

$$q(z) = \frac{\alpha I^{n-2} g(z) + (1-\alpha) I^{n-1} g(z)}{\alpha I^{n-1} g(z) + (1-\alpha) I^{n} g(z)}.$$

Then

$$q(z)(\alpha I^{n-1}g(z) + (1-\alpha)I^ng(z)) = \alpha I^{n-2}g(z) + (1-\alpha)I^{n-1}g(z).$$

Differentiating this with respect to z and multiplying by z (noting that $zf'(z) = I^{-1}f(z)$) we get

$$\begin{split} zq'(z)(\alpha I^{n-1}g(z) + (1-\alpha)I^ng(z)) + q(z)(\alpha I^{n-2}g(z) + (1-\alpha)I^{n-1}g(z)) \\ &= \alpha I^{n-3}g(z) + (1-\alpha)I^{n-2}g(z); \end{split}$$

or

$$\operatorname{Re}\left(\frac{zq'(z)}{q(z)} + q(z)\right) = \operatorname{Re}\left(\frac{\alpha I^{n-3}g(z) + (1-\alpha)I^{n-2}g(z)}{\alpha I^{n-2}g(z) + (1-\alpha)I^{n-1}g(z)}\right) > 0$$

by Theorem 1, for $f \in S^{n-1}_s(\alpha)$. Now an application of Lemma A with $\beta=1, \gamma=0$ and $h(z)=\frac{1+z}{1-z}$ gives $\mathrm{Re} q(z)>0$ in E.

$$p(z)[\alpha I^{n-1}g(z) + (1-\alpha)I^ng(z)] = \alpha I^{n-2}f(z) + (1-\alpha)I^{n-1}f(z).$$

Differentiating this with respect to z and noting that $zf'(z) = I^{-1}f(z)$ we have

$$\begin{split} zp'(z)[\alpha I^{n-1}g(z) + (1-\alpha)I^ng(z)] \\ + p(z)I^{-1}[\alpha I^{n-1}g(z) + (1-\alpha)I^ng(z)] \\ = & I^{-1}[\alpha I^{n-2}f(z) + (1-\alpha)I^{n-1}f(z)]; \end{split}$$

or

$$zp'(z)[\alpha I^{n-1}g(z) + (1-\alpha)I^ng(z)] + p(z)[\alpha I^{n-2}g(z) + (1-\alpha)I^{n-1}g(z)]$$

= $\alpha I^{n-3}f(z) + (1-\alpha)I^{n-2}f(z)].$

This yields

$$\frac{\alpha I^{n-3} f(z) + (1-\alpha) I^{n-2} f(z)}{\alpha I^{n-2} g(z) + (1-\alpha) I^{n-1} g(z)} = p(z) + \frac{z p'(z)}{q(z)}.$$

Since $f \in S_s^{n-1}(\alpha)$, Re(p(z) + zp'(z)/q(z)) > 0 and an application of Lemma B gives Rep(z) > 0 and the theorem is thus proved.

Theorem 3. The inclusion relation $S_s^n(\alpha) \subset S_s^n(0)$ is satisfied for $0 \le \alpha \le 1$.

Proof. Let $f \in S_s^n(\alpha)$. We set

$$\frac{I^{n-1}f(z)}{I^ng(z)} = p(z)$$
 and $\frac{I^{n-1}g(z)}{I^ng(z)} = q(z)$,

where g(z) = (f(z) - f(-z))/2.

From theorem 1 we infer that Re q(z) > 0. Now

$$\begin{split} &\frac{\alpha I^{n-2} f(z) + (1-\alpha) I^{n-1} f(z)}{\alpha I^{n-1} g(z) + (1-\alpha) I^n g(z)} \\ &= & \frac{I^{-1} [\alpha p I^n g(z)] + (1-\alpha) p(z) K^n g(z)}{\alpha I^{n-1} g(z) + (1-\alpha) I^n g(z)} \\ &= & \frac{\alpha p(z) I^{n-1} g(z) + \alpha z p'(z) I^n g(z) + (1-\alpha) p(z) I^n g(z)}{\alpha I^{n-1} g(z) + (1-\alpha) I^n g(z)} \\ &= & p(z) + \frac{z p'(z)}{q(z) + \frac{(1-\alpha)}{\alpha}}. \end{split}$$

Since $f \in S_s^n(\alpha)$,

Re
$$p(z) + \frac{zp'(z)}{q(z) + \frac{(1-\alpha)}{\alpha}} > 0$$
.

An application of Lemma B gives that Re p(z) > 0 if $\alpha \le 1$ thereby proving the theorem.

Theorem 4. Let $f \in S_s^n(\alpha)$. If F is defined by the equation

$$F(z) = \frac{1}{\alpha z^{1/\alpha - 1}} \int_0^z t^{\frac{1}{\alpha} - 2} f(t) dt$$

then $F \in S_s^n(\alpha)$ for $0 < \alpha \le 1$.

Proof. From the definition of F(z) we get

$$z^{\frac{1}{\alpha}-1}F(z) = \frac{1}{\alpha} \int_0^z t^{\frac{1}{\alpha}-2} f(t) dt.$$

Differentiating with respect to z,

$$z^{\frac{1}{\alpha}-1}F'(z) + (\frac{1}{\alpha}-1)z^{\frac{1}{\alpha}-2}F(z) = \frac{1}{\alpha}z^{\frac{1}{\alpha}-2}f(z).$$

That is

$$\alpha z F'(z) + (1 - \alpha)F(z) = f(z). \tag{1}$$

Now

$$g(z) = \frac{f(z) - f(-z)}{2}$$

$$= \frac{1}{2} [\alpha z F'(z) + (1 - \alpha)F(z) - \alpha(-z)F'(-z) - (1 - \alpha)F(-z)]$$

$$= \frac{\alpha}{2} (zF'(z) - (-z)F(-z)) + \frac{(1 - \alpha)}{2} (F(z) - F(-z))$$

$$= \frac{1}{2} (\alpha z G'(z) + (1 - \alpha)G(z)), \qquad (2)$$

where $G(z) = \frac{F(z) - F(-z)}{2}$.

Also we can see that

$$G(z) = \frac{1}{\alpha z^{1/\alpha - 1}} \int_0^z t^{\frac{1}{\alpha} - 2} g(t) dt.$$

By Theorem 1, $g(z) \neq 0$ in $E - \{0\}$; hence equation (2) implies that $[\alpha z G'(z) + (1 - \alpha)G(z)]/2$ does not vanish in $E - \{0\}$. Using equation (1) and (2) we get

$$\frac{\alpha I^{n-2} F(z) + (1-\alpha) I^{n-1} F(z)}{\alpha I^{n-1} G(z) + (1-\alpha) I^n G(z)} = \frac{I^{n-1} f(z)}{I^n g(z)}.$$

Thus whenever $f \in S_s^n(\alpha)$, from Theorem 3 we have

$$\operatorname{Re}\{I^{n-1}f(z)/I^ng(z)\}0.$$

Hence $F \in S_s^n(\alpha)$ for $0 < \alpha \le 1$.

Definition 2. Any $f \in A$ with $f'(z)f(z)/z \neq 0$ in E is said to belong to the class $C_s^n(\alpha)$ if it satisfies

$$\operatorname{Re}\left\{\frac{\alpha I^{n-2}f(z)+(1-\alpha)I^{n-1}f(z)}{\alpha I^{n-2}\psi(z)+(1-\alpha)I^{n}\psi(z)}\right\}>0,\quad z\in E,$$

where $\psi(z) = (\phi(z) - \phi(-z))/2$ for some $\phi \in S_s^n(\alpha)$.

Theorem 5. Let $f \in C_s^{n-1}(\alpha)$. Then $f \in C_s^n(\alpha)$.

Proof. $f \in C_s^{n-1}(\alpha)$ implies that there exists a $\phi \in S_s^n(\alpha)$ such that

$$\operatorname{Re}\left\{\frac{\alpha I^{n-3} f(z) + (1-\alpha) I^{n-2} f(z)}{\alpha I^{n-2} \psi(z) + (1-\alpha) I^{n-1} \psi(z)}\right\} > 0$$

where $\psi(z) = (\phi(z) - \phi(-z))/2$. Let

$$p(z) = \frac{\alpha I^{n-2} f(z) + (1 - \alpha) I^{n-1} f(z)}{\alpha I^{n-1} \psi(z) + (1 - \alpha) I^{n} \psi(z)}$$

and

$$q(z) = \frac{\alpha I^{n-2} \psi(z) + (1-\alpha) I^{n-1} \psi(z)}{\alpha I^{n-1} \psi(z) + (1-\alpha) I^{n} \psi(z)}.$$

By Theorem 1, $\psi \in S_s^n(\alpha)$ and hence Re q(z) > 0. Further we have

$$p(z)[\alpha I^{n-1}\psi(z) + (1-\alpha)I^n\psi(z)] = \alpha I^{n-2}f(z) + (1-\alpha)I^{n-1}f(z).$$

Differentiating with respect to z and using the relation $I^{-1}f(z) = zf'(z)$ we get,

$$\begin{split} zp'(z)[\alpha I^{n-1}\psi(z) + (1-\alpha)I^n\psi(z)] + p(z)[\alpha I^{n-2}\psi(z) + (1-\alpha)I^{n-1}\psi(z)] \\ &= \alpha I^{n-3}f(z) + (1-\alpha)I^{n-2}f(z) \end{split}$$

Hence

$$p(z) + \frac{zp'(z)}{q(z)} = \frac{\alpha I^{n-3} f(z) + (1-\alpha) I^{n-2} f(z)}{\alpha I^{n-2} \psi(z) + (1-\alpha) I^{n-1} \psi(z)}.$$

Since $f \in C_s^{n-1}(\alpha)$, Re $\{p(z) + \frac{zp'(z)}{q(z)}\} > 0$ and now an application of Lemma B gives Re p(z) > 0 and this proves the theorem.

We now proceed to define two generalised classes of functins with respect to conjugate points and study their properties.

Definition 3. Any $f \in A$ with $f'(z)f(z)/z \neq 0$ in E is said to be in $S_c^n(\alpha)$ if it satisfies

$$\operatorname{Re}\left\{\frac{\alpha I^{n-2}f(z)+(1-\alpha)I^{n-1}f(z)}{\alpha I^{n-1}g(z)+(1-\alpha)I^{n}g(z)}\right\}>0$$

where $g(z) = (f(z) + \overline{f(\overline{z})})/2$.

When $\alpha = 0$, n = 0 we get a class defined in [4]; when n = 0 this class reduces to a class defined by S. Radha [5].

Theorem 6. Let $f \in S_c^n(\alpha)$. Then

$$\operatorname{Re}\left\{\frac{\alpha I^{n-2}g(z)+(1-\alpha)I^{n-1}g(z)}{\alpha I^{n-1}g(z)+(1-\alpha)I^{n}g(z)}\right\}>0$$

where g is defined as above. Further if $0 \le \alpha \le 1$, $Re\{I^{n-1}g(z)/I^ng(z)\} > 0$.

Proof. Consider

$$\begin{split} &\frac{\alpha I^{n-2}g(z) + (1-\alpha)I^{n-1}g(z)}{\alpha I^{n-1}g(z) + (1-\alpha)I^{n}g(z)} \\ &= \frac{\alpha I^{n-2}(f(z) + \overline{f(\bar{z})}) + (1-\alpha)I^{n-1}(f(z) + \overline{f(\bar{z})})}{2(\alpha I^{n-1}g(z) + (1-\alpha)I^{n}g(z))} \\ &= \frac{\alpha I^{n-2}f(z) + (1-\alpha)I^{n-1}f(z)}{2(\alpha I^{n-1}g(z) + (1-\alpha)I^{n}g(z))} \\ &+ \frac{\alpha I^{n-2}\overline{f(\bar{z})} + (1-\alpha)I^{n-1}\overline{f(\bar{z})}}{2(\alpha I^{n-1}g(z) + (1-\alpha)I^{n}g(z))}. \end{split} \tag{3}$$

We have

$$\begin{array}{lcl} \alpha I^{n-2}\overline{f(\bar{z})} + (1-\alpha)I^{n-1}\overline{f(\bar{z})}) & = & \sum_{k=0}^{\infty}[\alpha k^{-(n-2)} + (1-\alpha)k^{-(n-1)}]\bar{a}_k z_k \\ & = & \overline{(\alpha I^{n-2} + (1-\alpha)I^{n-1})f(\bar{z})} \end{array}$$

since α and k are reals.

Further, since $\overline{g(\bar{z})} = g(z)$ we get

$$\frac{\alpha I^{n-2}\overline{f(\bar{z})} + (1-\alpha)I^{n-1}\overline{f(\bar{z})}}{2[\alpha I^{n-1}g(z) + (1-\alpha)I^{n}g(z)]} = \frac{\alpha I^{n-2}f(\bar{z}) + (1-\alpha)I^{n-1}f(\bar{z})}{2[\alpha I^{n-1}g(\bar{z}) + (1-\alpha)I^{n}g(\bar{z})]}.$$

Hence the right and side of equation (3) becomes

$$\begin{split} &\frac{\alpha I^{n-2} f(z) + (1-\alpha) I^{n-1} f(z)}{2[\alpha I^{n-1} g(z) + (1-\alpha) I^{n} g(z)]} + \frac{\overline{\alpha I^{n-2} f(\bar{z}) + (1-\alpha) I^{n-1} f(\bar{z})}}{2[\alpha I^{n-1} g(\bar{z}) + (1-\alpha) I^{n} g(\bar{z})]} \\ &= \frac{\phi(z) + \overline{\phi(\bar{z})}}{2} \end{split}$$

where $\phi(z) = \frac{\alpha I^{n-2} f(z) + (1-\alpha) I^{n-1} f(z)}{\alpha I^{n-1} g(z) + (1-\alpha) I^{n} g(z)}$.

Since $f \in S_s^n(\alpha)$, Re $\phi(z) > 0$ and also Re $\overline{\phi(\overline{z})} > 0$; this implies

Re
$$\left\{ \frac{\alpha I^{n-2} g(z) + (1-\alpha) I^{n-1} g(z)}{\alpha I^{n-1} g(z) + (1-\alpha) I^n g(z)} \right\} > 0.$$

Let $R = \{\sup r : I^n g(z) \neq 0 \text{ in } 0 < |z| < r\}$. We set

$$\frac{I^{n-1}g(z)}{I^ng(z)} = p(z)$$

and hence

$$I^{n-1}g(z)p(z)I^ng(z).$$

Differentiating this with respect to z and nothing that $I^{-1}f(z) = zf'(z)$ we get

$$z(I^{n-1}g(z))' = zp'(z)I^ng(z) + p(z)z(I^n(g(z))',$$

that is

$$I^{n-2}g(z)) = zp'(z)I^ng(z) + p(z)I^{n-1}g(z).$$

Thus

Re
$$\left\{ \frac{\alpha I^{n-2} g(z) + (1-\alpha) I^{n-1} g(z)}{\alpha I^{n+1} g(z) + (1-\alpha) I^{n} g(z)} \right\}$$

$$= \operatorname{Re} \left\{ \frac{\alpha(zp'(z)I^ng(z) + p(z)I^{n-1}g(z)) + (1-\alpha)p(z)I^ng(z)}{\alpha I^{n-1}g(z) + (1-\alpha)I^ng(z)} \right\}$$

$$= \operatorname{Re} \left\{ p(z) + \frac{zp'(z)}{p(z) + \frac{(1-\alpha)}{\alpha}} \right\} > 0$$

by the first part of the theroem.

Now applying Lemma A with h(z)=(1+z)/(1-z) we have Re p(z)>0 provided $0\leq\alpha\leq1$.

Thus Re $\{I^{n-1}g(z)/I^ng(z)\} > 0$ in |z| < R. Hence $I^ng(z)$ is starlike in |z| < R or $I^ng(z)$ is univalent in |z| < R and cannot vanish on |z| = R < 1. We conclude that R = 1 and the proof is complete.

Theorem 7. Let $f \in S_c^{n-1}(\alpha)$. Then $f \in S_c^n(\alpha)$.

Proof. $f \in S_c^{n-1}(\alpha)$ implies that

$$\operatorname{Re}\left\{\frac{\alpha I^{n-3} f(z) + (1-\alpha) I^{n-2} f(z)}{\alpha I^{n-2} g(z) + (1-\alpha) I^{n-1} g(z)}\right\} > 0$$

where g(z) is defined as in Definition 3. Let

$$p(z) = \frac{\alpha I^{n-2} f(z) + (1 - \alpha) I^{n-1} f(z)}{\alpha I^{n-1} g(z) + (1 - \alpha) I^{n} g(z)}$$

and

$$q(z) = \frac{\alpha I^{n-2} g(z) + (1-\alpha) I^{n-1} g(z)}{\alpha I^{n-1} g(z) + (1-\alpha) I^{n} g(z)}.$$

Using Teorem 6 for $f \in S_c^{n-1}(\alpha)$ and Lemma A, we can show that Req(z) > 0 as in Theorem 2.

Now

$$p(z)[2I^{n-1}g(z) + (1-\alpha)I^ng(z)] = 2I^{n-2}f(z) + (1-\alpha)I^{n-1}f(z).$$

Differentiating this with respect to z and using the fact that $I^{-1}f(z) = zf'(z)$ we get

$$zp'(z)[\alpha I^{n-1}g(z) + (1-\alpha)I^ng(z)] + p(z)[\alpha I^{n-2}g(z) + (1-\alpha)I^{n-1}g(z)]$$

= $\alpha I^{n-3}f(z) + (1-\alpha)I^{n-2}f(z)$

Hence

$$\operatorname{Re} \left\{ \frac{\alpha I^{n-3} f(z) + (1-\alpha) I^{n-2} f(z)}{\alpha I^{n-2} g(z) + (1-\alpha) I^{n-1} g(z)} \right\} = \operatorname{Re} \left\{ p(z) + \frac{z p'(z)}{q(z)} \right\}.$$

Since $f \in S_c^{n-1}(\alpha)$ we see that Re $\{p(z) + \frac{zp'(z)}{q(z)}\} > 0$ and an application of Lemma B gives Re p(z) > 0 and thus the theorem is proved.

Theorem 8. The inclusion relation $S_c^n(\alpha) \subset S_c^n(0)$ is satisfied for $0 \le \alpha \le 1$.

Proof. Let $\frac{I^{n-1}f(z)}{I^ng(z)}=p(z)$ and $\frac{I^{n-1}g(z)}{I^ng(z)}=q(z)$ where $g(z)=\frac{f(z)+\overline{f(\bar{z})}}{2}$. From Theorem 6 we infer that Re q(z)>0. Now

$$\begin{split} &\frac{\alpha I^{n-2} f(z) + (1-\alpha) I^{n-1} f(z)}{\alpha I^{n-1} g(z) + (1-\alpha) I^n g(z)} \\ &= &\frac{\alpha I^{n-1} (p(z) I^n g(z)) + (1-\alpha) p(z) I^n g(z)}{\alpha I^{n-1} g(z) + (1-\alpha) I^n g(z)} \\ &= &\frac{\alpha p(z) I^{n-1} g(z) + \alpha z p'(z) I^n g(z) + (1-\alpha) p(z) I^n g(z)}{\alpha I^{n-1} g(z) + (1-\alpha) I^n g(z)} \\ &= &p(z) + \frac{z p'(z)}{q(z) + \frac{(1-\alpha)}{\alpha}} \end{split}$$

 $f \in S_c^n(\alpha)$ implies that Re $\left\{ p(z) + \frac{zp'(z)}{q(z) + \frac{1-\alpha}{\alpha}} \right\} > 0$.

Now applying Lemma B we infer that Re p(z) > 0 and the theorem follows.

Theorem 9. Let $f \in S_c^n(\alpha)$. If F is defined by the equation

$$F(z) = \frac{1}{\alpha z^{1/\alpha - 1}} \int_0^2 t^{\frac{1}{\alpha} - 2} f(t) dt$$

then $F \in S_c^n(\alpha)$.

Proof. From the definition of F(z) we get

$$z^{\frac{1}{\alpha}-1}F(z) = \frac{1}{\alpha} \int_0^z t^{\frac{1}{\alpha}-2} f(t) dt.$$

Differentiating with respect to z we obtain

$$z^{\frac{1}{\alpha}-1}F'(z) + (\frac{1}{\alpha}-1)z^{\frac{1}{\alpha}-2}F(z) = \frac{1}{\alpha}z^{\frac{1}{\alpha}-2}F(z)$$

or

$$zF'(z) + (1 - \alpha)F(z) = f(z).$$
 (4)

Also

$$g(z) = \frac{f(z) + \overline{f(\overline{z})}}{2}$$

$$= \frac{1}{2} [\alpha z F'(z) + (1 - \alpha)F(z) + \alpha z \overline{F'(\overline{z})} + (1 - \alpha)\overline{F'(\overline{z})}]$$

$$= \frac{\alpha}{2} [\alpha z (F'(z) + \overline{F'(\overline{z})}) + (1 - \alpha)(F(z) + \overline{F(\overline{z})})]$$

$$= \alpha z G'(z) + (1 - \alpha)G(z), \tag{5}$$

where $G(z) = \frac{(F(z) + \overline{F(\overline{z})})}{2}$. Now $g(z) \neq 0$ in $E - \{0\}$ by Theorem 6) and hence $\alpha z G'(z) + (1 - \alpha)G(z)$ does not vanish in $E - \{0\}$. Also it is clear that

$$G(z) = \frac{1}{\alpha z^{1/\alpha - 1}} \int_0^z t^{\frac{1}{\alpha} - 2} g(t) dt.$$

Using equation (4) and (5) we get

$$\frac{\alpha I^{n-2} F(z) + (1-\alpha) I^{n-1} F(z)}{\alpha I^{n-1} G(z) + (1-\alpha) I^n G(z)} = \frac{I^{n-1} f(z)}{I^n g(z)}.$$

Whenever $f \in S_c^n(\alpha)$, applying Theorem 8 we infer that $F \in S_c^n(\alpha)$ for $0 < \alpha \le 1$.

Definition 4. Any $f \in A$ with $f'(z)f(z)/z \neq 0$ in E is said to belong to the class $C_c^n(\alpha)$ if it satisfies

$$\operatorname{Re}\left\{\frac{\alpha I^{n-2} f(z) + (1-\alpha) I^{n-1} f(z)}{\alpha I^{n-1} \psi(z) + (1-\alpha) I^{n-1} \psi(z)}\right\} > 0, \quad z \in E,$$

where $\psi(z) = (\phi(z) + \overline{\phi(\overline{z})})/2$ for some $\phi \in S_c^n(\alpha)$.

Theorem 10. Let $f \in C_c^{n-1}(\alpha)$. Then $f \in C_c^n(\alpha)$.

Proof. $f \in C_c^{n-1}(\alpha)$ implies that there exists a $\phi \in S_c^n(\alpha)$ such that

$$\operatorname{Re}\left\{\frac{\alpha I^{n-3}f(z)+(1-\alpha)I^{n-2}f(z)}{\alpha I^{n-2}\psi(z)+(1-\alpha)I^{n-1}\psi(z)}\right\}>0$$

where $\psi(z) = (\phi(z) + \overline{\phi(\bar{z})})/2$. We set

$$p(z) = \frac{\alpha I^{n-2} f(z) + (1-\alpha) I^{n-1} f(z)}{\alpha I^{n-1} \psi(z) + (1-\alpha) I^n \psi(z)}$$

and

$$q(z) = \frac{\alpha I^{n-2} \psi(z) + (1-\alpha) I^{n-1} \psi(z)}{\alpha I^{n-1} \psi(z) + (1-\alpha) I^{n} \psi(z)}.$$

From the definition of the function ψ and by Theorem 6, we have Re q(z) > 0. We have

$$p(z)[\alpha I^{n-1}\psi(z) + (1-\alpha)I^n\psi(z)] = \alpha I^{n-2}f(z) + (1-\alpha)I^{n-1}f(z).$$

Differentiating this with respect to z and using $I^{-1}f(z) = zf'(z)$ we get

$$zp'(z)[\alpha I^{n-1}\psi(z) + (1-\alpha)I^n\psi(z)] + p(z)[\alpha I^{n-2}\psi(z) + (1-\alpha)I^{n-1}\psi(z)]$$

= $\alpha I^{n-3}f(z) + (1-\alpha)I^{n-2}f(z)$.

This gives

$$p(z) + \frac{zp'(z)}{q(z)} = \frac{\alpha I^{n-3} f(z) + (1-\alpha) I^{n-2} f(z)}{\alpha I^{n-2} \psi(z) + (1-\alpha) I^{n-1} \psi(z)}.$$

Since $f \in C_c^{n-1}(\alpha)$, Re $\{p(z) + \frac{zp'(z)}{q(z)}\} > 0$ and now an application of Lemma B gives Re p(z) > 0 there by proving the theorem.

References

- P. Eenigenberg, S. S. Miller, P. T. Mocanu and M. O. Reade, On a Briot Bouquet differential subordination, Rev. Roumaine Math. Pures Appl., 29(1984), 567-573.
- [2] K. S. Padmanabhan and R. Parvatham, Some applications of differential subordination, Bull. Austral. Math. Soc., 32(1985), 321-330.

- [3] R. Parvatham and S. Radha, On α-starlike and α-close-to-convex functions with respect to n-symmetric points, Indian J. Pure Appl. Math., 16(1986), 1114-1122.
- [4] Rabha Md. El-Ashwah and D. K. Thomas, Some subclasses of close-to-convex functions, J. Ramanujan Math. Soc., 2(1987), 85-100.
- [5] S. Radha, On α-starlike and α-close-to-convex functions with respect to conjugate points, Bull. Inst. Mat. Academia Sinica, 18(1990), 41-47.
- [6] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11(1954), 72-75.
- [7] G. S. Salagean, Subclasses of univalent functions, Lecture notes in Mathematics Springer Verlag, 1013 (1981), 363-372.