Harmonic Conjugates of Bloch Functions on Half-Spaces

HeungSu Yi

Department of Mathematics, Seoul National University, Seoul 151-742, Korea.

(1991 AMS Classification number 31B05, 30D55, 30D45)

For a given harmonic Bloch function u vanishing at some point z_0 on the upper half-space, we represent unique harmonic conjugates of u which are also Bloch functions vanishing at z_0 in terms of partial derivatives of u.

The upper half-space $H = H_n$ is the open subset of $\mathbb{R}^n (n \geq 2)$ given by

$$H = \{(x, y) \in \mathbb{R}^n : y > 0\},\$$

where we have written a typical point $z \in \mathbb{R}^n$ as z = (x, y), with $x \in \mathbb{R}^{n-1}$ and $y \in \mathbb{R}$.

Given a harmonic function u on H, the functions v_1, \dots, v_{n-1} on H are called harmonic conjugates of u if

$$(1) (v_1, \cdots, v_{n-1}, u) = \nabla f$$

for some harmonic function u on H, where ∇f denotes the gradient of f. If (1) holds, then v_1, \dots, v_{n-1} are partial derivates of a harmonic function, so they are harmonic on H. Also (1) and the condition that f is harmonic is equivalent to the following "generalized Cauchy-Riemann equations"

$$D_k v_j = D_j v_k; D_n v_j = D_j u$$

$$\sum_{j=1}^{n-1} D_j v_j + D_n u = 0.$$

(Received: 13 October 1994)

Research supported in part by TGRC.

In particular, v is a harmonic conjugate of u if and only if u + iv is holomorphic on the upper half-plane H_2 .

If u is harmonic on H, then harmonic conjugates of u always exists. Unfortunately, they are far from unique. (When n > 2, harmonic conjugates for a given u may well differ by more than a constant. We refer more on harmonic conjugates to [AR], [S] and [SW].)

In this paper, we are interested in harmonic conjugates of Bloch functions on H. Recall that a harmonic function u on H is called a Bloch function if

$$||u||_{\mathcal{B}} = \sup y |\nabla u(x,y)| < \infty,$$

where the supremum is taken over all $(x,y) \in H$. (Here we use the \mathbb{C}^n -norm to calculate $|\nabla u(x,y)|$.) We let \mathcal{B} denote the collection of Bloch functions on H and let $\widetilde{\mathcal{B}}$ denote the subspace of functions in \mathcal{B} that vanish at $z_0 = (0,1)$. Then we can show easily that $\widetilde{\mathcal{B}}$ is a Banach space under the Bloch norm $\|\cdot\|_{\mathcal{B}}$.

Below we show that if $u \in \widetilde{\mathcal{B}}$, we can choose harmonic conjugates of u which can be written in terms of its partial derivatives and we show these conjugates are unique conjugates belonging to $\widetilde{\mathcal{B}}$. For this purpose, we first let

$$R(z, w) = \frac{4}{nV(B)} \frac{n(z_n + w_n)^2 - |z - \bar{w}|^2}{|z - \bar{w}|^{n+2}}$$

for $z = (z_1, \dots, z_{n-1}, z_n), w = (w_1, \dots, w_{n-1}, w_n) \in H$, where V(B) denotes the volume of the unit ball B in \mathbb{R}^n and $\bar{w} = (w_1, \dots, w_{n-1}, -w_n)$. (Note that if n = 2, then \bar{w} is the usual complex conjugate of w.) Then it is shown in [RY] that the function \tilde{R} defined on $H \times H$ by

$$\widetilde{R}(z,w) = R(z,w) - R(z_0,w)$$

has the following reproducing properties: If $u \in \widetilde{\mathcal{B}}$, then

(2)
$$u(z) = \int_{H} u(w)\widetilde{R}(z,w)dw = -2\int_{H} u(w)w_{n}D_{w_{n}}\widetilde{R}(z,w)dw$$

for $z \in H$. (Here dw = dV(w) denotes the Lebesgue volume measure in \mathbb{R}^n .) Furthermore from the definition of \widetilde{R} , we can show that for each $j = 1, \dots, n$, there is a constant C depending only on n and z such that

(3)
$$|\widetilde{R}(z,w)|, |w_n D_{w_j} \widetilde{R}(z,w)| \le \frac{C(n,z)}{1 + |w|^{n+1}}$$

for all $w \in H$. Now fix $u \in \widetilde{\mathcal{B}}$ for the rest of this paper and let

$$v_j(z) = -2 \int_H [D_{w_j} u(w)] w_n \widetilde{R}(z, w) dw$$

for $z \in H$. Then from the first estimate of (3), we have

$$|[D_{w_j}u(w)]w_n\widetilde{R}(z,w)| \le C(n,z)\frac{||u||_{\mathcal{B}}}{1+|w|^{n+1}},$$

which belongs to $L^1(H)$ as a function of w. Therefore v_j makes sense. Moreover, $v_j(z_0) = 0$ and by passing the Laplacian Δ_z through the integral above, we easily see that v_j is a harmonic function on H. Note that for $k = 1, 2, \dots, n$,

$$\begin{split} |z_n D_{z_k} v_j(z)| &= 2|z_n \int_H [D_{w_j} u(w)] w_n D_{z_k} \widetilde{R}(z, w) dw| \\ &= 2|z_n \int_H [D_{w_j} u(w)] w_n D_{z_k} R(z, w) dw| \\ &\leq 2||u||_{\mathcal{B}} z_n \int_H \frac{C(n)}{|z - \overline{w}|^{n+1}} dw \\ &\leq 2C(n)||u||_{\mathcal{B}} z_n \int_0^\infty \frac{1}{(z_n + w_n)^2} (\int_{R^{n-1}} \frac{z_n + w_n}{|z - \overline{w}|^n} dw_1 \cdots dw_{n-1}) dw_n. \end{split}$$

The inner integral above equals

$$\frac{nV(B)}{2} \int_{\mathbb{R}^{n-1}} P(z+(0,w_n),(w_1,\cdots,w_{n-1},0)) dw_1 \cdots dw_{n-1} = \frac{nV(B)}{2},$$

where P is the Poisson kernel for the upper half space. (We refer more on Poisson kernel to [ABR].) Hence

$$|z_n D_{z_k} v_j(z)| \le C(n) ||u||_{\mathcal{B}} z_n \int_0^\infty \frac{1}{(z_n + w_n)^2} dw_n$$

 $\le C(n) ||u||_{\mathcal{B}}.$

(Here C(n) denotes a constant depending on n whose value may change from line to line.) Therefore $v_j \in \widetilde{\mathcal{B}}$ and $||v_j||_{\mathcal{B}} \leq C(n)||u||_{\mathcal{B}}$. To get

the main result, we need one lemma whose proof relies on integration by parts.

(4) Lemma. For $j = 1, 2, \dots, n-1$ and for $z \in H$,

(5)
$$v_j(z) = 2 \int_H u(w) w_n D_{w_j} \widetilde{R}(z, w) dw$$

Proof. First note that the integral in (5) makes sense. We can easily see theis from (3) and the following estimate;

(6)
$$|u(w)| \le 2||u||_{\mathcal{B}}(1+|\log w_n|+2\log(1+|w|))$$

for $w \in H$. (See [AR].) Thus the right side of (5) equals

(7)
$$2\int_{\mathbb{R}^{n-2}} \int_0^\infty w_n \int_{-\infty}^\infty u(w) D_{w_j} \widetilde{R}(z, w) dw_j dw_n \widehat{dw_{jn}},$$

where $\widehat{dw_{jn}} = dw_1 \cdots dw_{j-1} dw_{j+1} \cdots dw_{n-1}$. From estimates (3) and (6) we can also show that $|u(w)\widetilde{R}(z,w)| \to 0$ as $|w_j| \to \infty$. Now integrating by parts in the innermost integral above, (7) becomes

$$\begin{split} &-2\int_{R^{n-2}}\int_0^\infty w_n\int_{-\infty}^\infty [D_{w_j}u(w)]\widetilde{R}(z,w)dw_jdw_n\widehat{dw_{jn}}\\ = &-2\int_H [D_{w_j}u(w)]w_n\widetilde{R}(z,w)dw\\ = &v_j(z). \end{split}$$

This completes the proof.

(8) **Theorem**. The functions v_1, \dots, v_{n-1} defined above are unique harmonic conjugates of u belonging to $\widetilde{\mathcal{B}}$.

Proof. We know each $v_j \in \widetilde{\mathcal{B}}$. To show v_1, \dots, v_{n-1} are harmonic conjugates of u, note that for $j, k = 1, 2, \dots, n-1$,

$$D_{z_k}D_{w_j}\widetilde{R}(z,w) = -D_{z_j}D_{z_k}R(z,w) = D_{z_j}D_{w_k}\widetilde{R}(z,w),$$

(9)
$$D_{z_n}D_{w_j}\widetilde{R}(z,w) = -D_{z_j}D_{w_n}\widetilde{R}(z,w).$$

Note also that

$$D_{z_n}D_{w_n}\widetilde{R}(z,w) = D_{z_n}^2R(z,w).$$

Hence by differentiating through the integral in (5), we have $D_k v_j = D_j v_k$ for $j, k = 1, 2, \dots, n-1$. Similarly from (2) and (9), we get $D_n v_j = D_j u$. Finally,

$$\left(\sum_{j=1}^{n-1} D_{j} v_{j} + D_{n} u\right)(z) = -2 \int_{H} u(w) w_{n} \triangle_{z} R(z, w) dw \equiv 0$$

for all $z \in H$.

Hence v_1, \dots, v_{n-1}, u satisfy the generalized Cauchy-Riemann equations and it follows that v_1, \dots, v_{n-1} are harmonic conjugates of u.

To complete the proof, suppose that u_1, \dots, u_{n-1} are also harmonic conjugates of u such that $u_j \in \widetilde{\mathcal{B}}$ for each j. Then

$$||v_j - u_j||_{\mathcal{B}} \le C(n)||z_n D_{z_n}(v_j - u_j)||_{\infty}.$$

(See Theroem 5.13 of [RY].) Since $D_{z_n}(v_j - u_j) = D_j(u - u) = 0$, we get $||v_j - u_j||_{\mathcal{B}} = 0$ and so $v_j = u_j$ as desired.

Remark. Given a harmonic Bloch function u on the upper half space, the existence of unique harmonic conjugates of u which are also Bloch, was shown in [AR] for the first time using a normal family argument.

References

- [AR] H. Ajmi and W. Ramey, Harmonic Bloch Functions on the Upper Half Space, to appear.
- [ABR] S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Springer-Verlag, New York, 1992.
- [HL] G. H. Hardy and J. E. Littlewood, Some Properties of Conjugate Functions, Reine Angew. Math. 167(1931), 405-423.
- [RY] W. Ramey and H. Yi, Harmonic Bergman Functions on Half-Spaces, Trans. of A.M.S., to appear.
- [S] E. Stein, Singular Integrals and Differentiablity Properties of Functions, Princeton University Press, Princeton, 1970.

- [SW] E. Stein and G. Weiss, Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 1971.
- [Z] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, Inc., New York and Basel, 1990.