On Hom(−, −) As BCK/BCI-Algebras

Young Bae Jun
Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea

Jie Meng
Department of Mathematics, Northwest University, Xian 710069, P.R. China

(1991 AMS Classification number : 06F35, 03G25)

We investigate some properties of Hom(−, −) as BCK/BCI-algebras, and discuss some ideal structure in Hom(−, −).

1. Introduction

This paper is a continuation of [14]. Iséki and Thaheem [13] proved that if \(X \) is an associative BCI-algebra then \(Hom(X) \), the set of all homomorphisms on \(X \), is again an associative BCI-algebra. Aslam and Thaheem [1] proved that if \(X \) is a p-semisimple BCI-algebra then \(Hom(X) \) is a p-semisimple BCI-algebra. Hoo and Murty [7] and Deeba and Goel [3] independently showed that \(Hom(X) \) may not, in general, be a BCI-algebra for an arbitrary BCI-algebra. In view of this result we can also see that \(Hom(X,Y) \), the set of all homomorphisms of a BCI-algebra \(X \) into an arbitrary BCI-algebra \(Y \) may not be a BCI-algebra in general. However Deeba and Goel [3] proved that if \(X \) is a BCI-algebra and \(Y \) is a BCK-algebra then \(Hom(X,Y) \) is a BCK-algebra and hence a BCI-algebra. Liu [16] showed that if \(X \) is a BCI-algebra and \(Y \) is a p-semisimple BCI-algebra then \(Hom(X,Y) \) is a p-semisimple BCI-algebra. In [14] we discussed the orthogonal subsets of BCI-algebras, and investigated their properties which are related to some ideals. In this note we

(Received : 15 February 1993)
investigate some properties of $\text{Hom}(-,-)$ as BCK/BCI-algebras.

2. $\text{Hom}(-,-)$ as BCK/BCI-algebras

Recall that a BCI-algebra is a nonempty set X with a binary operation $*$ and a constant 0 satisfying the axioms:

1. $\{(x * y) * (x * z)\} * (z * y) = 0$,
2. $\{x * (x * y)\} * y = 0$,
3. $x * x = 0$,
4. $x * y = 0$ and $y * x = 0$ imply that $x = y$,
5. $x * 0 = 0$ implies $x = 0$,

for all $x, y, z \in X$. If (5) is replaced by (6) $0 * x = 0$, then the algebra is called a BCK-algebra. A partial ordering \leq on X can be defined by $x \leq y$ if and only if $x * y = 0$. A BCI-algebra X is said to be associative([8]) if $(x * y) * z = x * (y * z)$ for all $x, y, z \in X$. Let X_+ be the BCK-part of a BCI-algebra X, that is, X_+ is the set of all $x \in X$ such that $x \geq 0$. If $X_+ = \{0\}$ then X is called a p-semisimple BCI-algebra([15]).

A mapping $f : X \rightarrow Y$ between BCK/BCI-algebras X and Y is called a homomorphism if $f(x * y) = f(x) * f(y)$ for all $x, y \in X$. Define the trivial homomorphism 0 as $0(x) = 0$ for all $x \in X$. Denote by $\text{Hom}(X,Y)$ the set of all homomorphisms of a BCK/BCI-algebra X into a BCK/BCI-algebra Y. A BCK-algebra X satisfying $(x * z) * (y * z) = (x * y) * z$ for all $x, y, z \in X$ is said to be positive implicative([12]). If, in a BCK-algebra X, $x * (y * x) = x$ holds for all $x, y \in X$, then it is called to be implicative([12]). It is shown in [12] that any implicative BCK-algebra is positive implicative.

Lemma 1. ([12]) A BCK-algebra X is positive implicative if and only if $x * y = (x * y) * y$ for all $x, y \in X$.

Theorem 1. Let X be a BCI-algebra and Y be a positive implicative BCK-algebra. Then $\text{Hom}(X,Y)$ is a positive implicative BCK-algebra.

Proof. From Lemma 1 we only need to show that $(f * g) * g = f * g$ for every $f, g \in \text{Hom}(X,Y)$. Let $f, g \in \text{Hom}(X,Y)$ and $x \in X$. Since Y is positive implicative, we have $((f * g) * g)(x) = (f * g)(x) * g(x) = (f(x) * g(x)) * g(x) = f(x) * g(x) = (f * g)(x)$. This means that $(f * g) * g = f * g$, and the proof is completed.
Theorem 2. If X is a BCI-algebra and Y is an implicative BCK-algebra then $Hom(X, Y)$ is an implicative BCK-algebra.

Proof. Let $f, g \in Hom(X, Y)$ and $x \in X$. Then $(f \ast (g \ast f))(x) = f(x) \ast (g \ast f)(x) = f(x) \ast (g(x) \ast f(x)) = f(x)$, because Y is implicative. Hence $f \ast (g \ast f) = f$, and the proof is completed.

A BCK-algebra X is called a Γ-BCK-algebra([4]) if whenever $x \ast y = y \ast x$ then $x = y$ for every $x, y \in X$.

Theorem 3. If X is a BCI-algebra and Y is a Γ-BCK-algebra then $Hom(X, Y)$ is a Γ-BCK-algebra.

Proof. Assume that $f \ast g = g \ast f$ for $f, g \in Hom(X, Y)$. Then $f(x) \ast g(x) = (f \ast g)(x) = (g \ast f)(x) = g(x) \ast f(x)$ for any $x \in X$. Since Y is a Γ-BCK-algebra, it follows that $f(x) = g(x)$ for all $x \in X$, and that $f = g$. Hence $Hom(X, Y)$ is a Γ-BCK-algebra.

Since any positive implicative BCK-algebra is a Γ-BCK-algebra([4]), we have the following corollary.

Corollary 1. If X is a BCI-algebra and Y is a positive implicative BCK-algebra, then $Hom(X, Y)$ is a Γ-BCK-algebra.

A BCK-algebra X is said to be with condition (S) ([10]) if for any fixed y, z in X, the set $A(y, z) = \{x \in X : x \ast y \leq z\}$ has the greatest element which we denote by $y \circ z$.

In any BCK-algebra X with condition (S), the following hold for all $x, y, z \in X$ (see [10]):

1. $x \circ 0 = 0 \circ x = x$,
2. $x \ast (y \circ z) = (x \ast y) \circ z$.

In case X is also implicative, then

3. $(x \circ y) \ast z = (x \ast z) \circ (y \ast z)$,
4. $x \circ x = x$.

In [11] Iséki considered a condition on BCK-algebras that he called condition (C). This states that if $y, z \leq x$ and $x \ast z \leq x \ast y$, then $y \leq z$.

Theorem 4. Let X be a BCI-algebra and Y be an implicative BCK-algebra with condition (S). Then the algebra $Hom(X, Y)$ is also with
condition (S).

Proof. Define an operation "o" on $\text{Hom}(X, Y)$ by $(f \circ g)(x) = f(x) \circ g(x)$ for all $x \in X$ and all $f, g \in \text{Hom}(X, Y)$. Then $f \circ g$ is clearly well-defined. Now

$$
((f \circ g) \ast f)(x) = (f \circ g)(x) \ast f(x)
$$

$$
= (f(x) \circ g(x)) \ast f(x)
$$

$$
= (f(x) \ast f(x)) \circ (g(x) \ast f(x)) \quad \text{[by (9)]}
$$

$$
= 0 \circ (g(x) \ast f(x))
$$

$$
= g(x) \ast f(x) \quad \text{[by (7)]}
$$

$$
\leq g(x)
$$

for all $x \in X$. This shows that $f \circ g \in A(f, g)$. To prove $f \circ g$ is the greatest element of $A(f, g)$, let $h \in A(f, g)$. Then

$$
(h \ast (f \circ g))(x) = h(x) \ast (f \circ g)(x)
$$

$$
= h(x) \ast (f(x) \circ g(x))
$$

$$
= (h(x) \ast f(x)) \ast g(x) \quad \text{[by (8)]}
$$

$$
= (h \ast f)(x) \ast g(x) = 0
$$

for every $x \in X$, which implies that $h \ast (f \circ g) = 0$, that is, $h \leq f \circ g$. This completes the proof.

Theorem 5. Let X be a BCI-algebra and Y a BCK-algebra. If Y satisfies the condition (C), then the algebra $\text{Hom}(X, Y)$ also satisfies the condition (C).

Proof. Let $f, g, h \in \text{Hom}(X, Y)$ be such that $g, h \leq f$ and $f \ast h \leq f \ast g$. Then $g(x), h(x) \leq f(x)$ and $f(x) \ast h(x) = (f \ast h)(x) \leq (f \ast g)(x) = f(x) \ast g(x)$ for all $x \in X$. Since Y satisfies the condition (C), it follows that $g(x) \leq h(x)$ for every $x \in X$. Hence $g \leq h$, and $\text{Hom}(X, Y)$ satisfies the condition (C).

For any elements x, y in a BCI-algebra X, let us write $x \ast y^n$ for $(...((x \ast y) \ast y) \ast ...) \ast y$ where y occurs n times. We say that an element x in a BCI-algebra X is a nilpotent element ([9]) if $0 \ast x^n = 0$ for some
positive integer \(n \). If every element \(x \) of \(X \) is nilpotent, then \(X \) is called a nil algebra ([9]).

Theorem 6. Let \(X \) be a BCI-algebra and \(Y \) a \(p \)-semisimple BCI-algebra. If \(Y \) is nil, then \(\text{Hom}(X, Y) \) is nil.

Proof. Let \(f \in \text{Hom}(X, Y) \) and let \(x \in X \). Since \(Y \) is nil, there exists a positive integer \(n \) such that \(0 \ast f(x)^n = 0 \). It follows that

\[
0(x) = 0 = 0(x) \ast f(x)^n \\
= (...)0(x) \ast f(x) \ast f(x) \ast ... \ast f(x) (f(x) \text{ occurs } n \text{ times}) \\
= (...)0 \ast f \ast f \ast ... \ast f(x) (f \text{ occurs } n \text{ times}) \\
= (0 \ast f^n)(x),
\]

so that \(0 \ast f^n = 0 \). The proof is complete.

A non-empty subset \(I \) of a BCK/BCI-algebra \(X \) is called an ideal of \(X \) if (i) \(0 \in I \), (ii) \(y \ast x \in I \) and \(x \in I \) imply that \(y \in I \). An ideal \(I \) of a BCI-algebra \(X \) is a closed ideal ([6]) if \(0 \ast x \in I \) whenever \(x \in I \). An ideal \(I \) in a BCI-algebra \(X \) is called a strong ideal ([2]) if for \(a \in I, x \in X - I, a \ast x \in X - I \). Let \(X \) be a BCI-algebra and \(Y \) a \(p \)-semisimple BCI-algebra. Let \(M \) and \(\Theta \) be subsets of \(X \) and \(\text{Hom}(X, Y) \) respectively. We define orthogonal subsets \(M^\perp \) and \(\Theta^\perp \) of \(M \) and \(\Theta \) respectively ([14]) by

\[
M^\perp = \{ f \in \text{Hom}(X, Y) \mid f(x) = 0 \text{ for all } x \in M \}
\]

and

\[
\Theta^\perp = \{ x \in X \mid f(x) = 0 \text{ for all } f \in \Theta \}.
\]

It is shown in [14] that \(M^\perp \) and \(\Theta^\perp \) are ideals of \(\text{Hom}(X, Y) \) and \(X \) respectively.

Theorem 7. Let \(X \) be a BCI-algebra, \(Y \) a \(p \)-semisimple BCI-algebra, \(M \subseteq X \) and \(\Theta \subseteq \text{Hom}(X, Y) \). Then \(M^\perp \) and \(\Theta^\perp \) are strong ideals of \(\text{Hom}(X, Y) \) and \(X \) respectively.

Proof. Note that in a \(p \)-semisimple BCI-algebra, an ideal \(I \) is strong if and only if it is closed. From [14; Proposition 1 and Theorem 4], we have that \(M^\perp \) is a strong ideal of \(\text{Hom}(X, Y) \). Let \(a \in \Theta^\perp \) and \(x \in X - \Theta^\perp \).
If \(a * x \not\in X - \Theta^\perp \), then \(a * x \in \Theta^\perp \) and hence \(0 = f(a * x) = f(a) * f(x) = 0 * f(x) \) for all \(f \in \Theta \). Since \(Y \) is p-semisimple, it follows from [14;Lemma 2(13)] that \(f(x) = 0 \) for every \(f \in \Theta \). Thus \(x \in \Theta^\perp \), a contradiction. Therefore \(a * x \in X - \Theta^\perp \), and \(\Theta^\perp \) is a strong ideal of \(X \).

A non-empty subset \(I \) of a BCI-algebra \(X \) is called a quasi-associative ideal of \(X \) ([17]) if (i) \(0 \in I \), (ii) \(x * (y * z) \in I \) and \(y \in I \) imply \(x * z \in I \).

Lemma 1. ([8], [13]) In a BCI-algebra \(X \) the following are equivalent:
1. \(X \) is associative,
2. \(x * y = y * x \) for all \(x, y \in X \),
3. \(0 * x = x \) for all \(x \in X \).

Theorem 8. Let \(X \) be a BCI-algebra and \(Y \) an associative BCI-algebra. Let \(M \) and \(\Theta \) be subsets of \(X \) and \(\text{Hom}(X, Y) \) respectively. Then \(M^\perp \) and \(\Theta^\perp \) are quasi-associative ideals of \(\text{Hom}(X, Y) \) and \(X \) respectively.

Proof. Note that the zero homomorphism is contained in \(M^\perp \). Let \(f * (g * h) \in M^\perp \) and \(g \in M^\perp \). Then for any \(x \in M \), \(0 = (f * (g * h))(x) = f(x) * (g(x) * h(x)) \) and \(0 = g(x) \). It follows from Lemma 1 that \(0 = f(x) * (0 * h(x)) = f(x) * h(x) = (f * h)(x) \) for all \(x \in M \). Hence \(f * h \in M^\perp \) and \(M^\perp \) is a quasi-associative ideal of \(\text{Hom}(X, Y) \). Next clearly \(0 \in \Theta^\perp \). Assume that \(x * (y * z) \in \Theta^\perp \) and \(y \in \Theta^\perp \). Then \(0 = f(x * (y * z)) = f(x) * (f(y) * f(z)) \) and \(0 = f(y) \) for every \(f \in \Theta \). From Lemma 1 it follows that \(0 = f(x) * (0 * f(z)) = f(x) * f(z) = f(x * z) \) for all \(f \in \Theta \). Thus \(x * z \in \Theta^\perp \). The proof is complete.

References

