TENT SPACES OVER LIPSCHITZ DOMAINS WITH APPROACH REGIONS

BYUNG-OH PARK

1. Introduction

Several authors have studied the L^p boundedness of maximal functions defined by means of general subsets. This depends on an atomic decomposition for certain tent spaces. This was proved in the Euclidean case \mathbf{R}_{+}^{n+1} by Coifman, Meyer, and Stein[2]. Also, María J,Carro and Javier Soria have studied the tent spaces over general approach regions and their atomic decomposition.

In this paper, we are going to define a tent spaces over Lipschitz domains with approach regions. Also, duality and atomic decomposition of tent spaces generalize the earlier results.([1],[2])

This purpose of the present paper is to show that every element of the tent spaces $\mathbf{T}_{\Omega}^{p}(\mathcal{L})(0 can be decomposed into particles which are called "atoms" [Thm 1] and the dual space of <math>\mathbf{T}_{\Omega}^{p}(\mathcal{L})(0 is the space of Carleson measure [Thm 2].$

2. Preliminaries

A real valued function ϕ defined on R^n is said to be a Lipschitz function if there exists a constant M such that $|\phi(x) - \phi(y)| \leq M|x - y|$ for all $x, y \in R^n$.

Let \mathcal{L} be the set

$$\mathcal{L} = \{(y,t) \in R^n \times R : \phi(y) < t\}$$

Then \mathcal{L} is called a *Lipschitz domain* determined by ϕ . The boundary of \mathcal{L} will be denoted by $\partial \mathcal{L}$. For $\widetilde{x} = (x, \phi(x)) \in \partial \mathcal{L}$, let π be the projection of $\partial \mathcal{L}$ onto R^n given by $\pi(\widetilde{x}) = x$. A set $U \subset \partial \mathcal{L}$ is said to be *open* if $\pi(U)$ is open in R^n . Also, we will denote ds by the area measure on $\partial \mathcal{L}$.

Received June 1, 1995.

Let $\Omega = {\Omega_{\tilde{x}}}_{\tilde{x} \in \partial \mathcal{L}}$ be a collection of measurable subset, where $\Omega_{\tilde{x}} \subset \mathcal{L}$. For a measurable function f on \mathcal{L} . We define the maximal function of f with respect to Ω as

$$\mathcal{A}_{\Omega}^{\infty}(f)(\tilde{x}) = \sup_{(y,t) \in \Omega_{\tilde{x}}} |f(y,t)|.$$

We will always assume that Ω is choosen so that $\mathcal{A}_{\Omega}^{\infty}(f)$ is a measurable function. We also define the *tent space* $T_{\Omega}^{p}(\mathcal{L})$ is defined as the spaces of functions f so that $\mathcal{A}_{\Omega}^{\infty}(f) \in L^{p}(\partial \mathcal{L}, ds)$, where p is finite and with norm $||f||_{T_{\Omega}^{p}} = ||\mathcal{A}_{\Omega}^{\infty}(f)||_{L^{p}(\partial \mathcal{L})}$.

Suppose $\Omega = {\{\Omega_{\tilde{x}}\}_{\tilde{x} \in \partial \mathcal{L}}}$, where F is any subset of $\partial \mathcal{L}$. We define the *tent* over F, with respect to Ω as

$$\widehat{F_{\Omega}} = \mathcal{L} \setminus \cup_{\tilde{x} \notin F} \Omega_{\tilde{x}}.$$

We also set $\Omega_{\tilde{x}}(t) = \{\tilde{y} \in \partial \mathcal{L} : (y,t) \in \Omega_{\tilde{x}}\}$. For a measure μ in \mathcal{L} , we say μ is an (Ω, β) -Carleson measure $(\beta \geq 1)$ and write $\mu \in V_{\Omega}^{\beta}$ if

$$||\mu||_{V_{\Omega}^{\beta}} = \sup_{Q \subset \partial \mathcal{L}} \frac{|\mu|(\widehat{Q_{\Omega}})}{|Q|^{\beta}} < \infty,$$

where the supremum is taken over all cubes $Q \subset \partial \mathcal{L}$. Some relevant definitions and results are given in [1],[2] and [4]. Throughout this paper, points on $\partial \mathcal{L}$ will be denoted by $\tilde{x}, \tilde{y}, ...,$ etc.

3. Duality and atomic decomposition of $T^p_{\Omega}(\mathcal{L})(0 space$

LEMMA 1. suppose $F \subset \partial \mathcal{L}$, $\Omega = {\{\Omega_{\tilde{x}}\}_{\tilde{x} \in \partial \mathcal{L}}}$ are as above. Then

- (i) $A_{\Omega}^{\infty}(\chi_{\widehat{F_{\Omega}}})(\tilde{x}) \leq \chi_F(\tilde{x})$ for all $\tilde{x} \in \partial \mathcal{L}$.
- (ii) $A_{\Omega}^{\infty}(\chi_{\widehat{F_{\Omega}}})(\tilde{x}) = \chi_F(\tilde{x})$ if and only if $\Omega_{\tilde{x}} \cap \widehat{F_{\Omega}} \neq \emptyset$ for all $\tilde{x} \in F$.
- (iii) If Ω is a symmetric family (that is, if $\tilde{x} \in \Omega_{\tilde{y}}(t)$ then $\tilde{y} \in \Omega_{\tilde{x}}(t)$), we have that

$$\widehat{F_{\Omega}} = \{(\widetilde{y}, t) \in \mathcal{L} : \Omega_{\widetilde{y}}(t) \subset F\}.$$

Proof. (i) Observe that

(3.1)
$$\chi_{\widehat{F_{\Omega}}}(\tilde{y},t) = \begin{cases} 1 & \text{if } (\tilde{y},t) \not\in \Omega_{\tilde{z}} \text{ for all } \tilde{z} \not\in F \\ 0 & \text{otherwise.} \end{cases}$$

Suppose $\tilde{x} \notin F$. If $(\tilde{y}, t) \in \Omega_{\tilde{x}}$, then we have $\chi_{\widehat{F_{\Omega}}}(\tilde{y}, t) = 0$ (by (3.1)) and this shows(i).

- (ii) $A_{\Omega}^{\infty}(\chi_{\widehat{F_{\Omega}}})(\tilde{x}) = \chi_F(\tilde{x})$ if and only if for all $\tilde{x} \in F$, $A_{\Omega}^{\infty}(\chi_{\widehat{F_{\Omega}}})(\tilde{x}) = 1$ if and only if there exists $(\tilde{y}, t) \in \Omega_{\tilde{x}}$ such that $(y, t) \in \widehat{F_{\Omega}}$ if and only if $\Omega_{\tilde{x}} \cap \widehat{F_{\Omega}} \neq \emptyset$
- (iii) That $(y,t) \in \widehat{F_{\Omega}}$ means that $y \notin \Omega_{\tilde{x}}(t)$, for all $\tilde{x} \notin F$, which, by symmetry, is equivalent to saying that for all $\tilde{x} \notin F$, $\tilde{x} \notin \Omega_{\tilde{y}}(t)$; that is, $\Omega_{\tilde{y}}(t) \subset F$.

Let \mathcal{L} be a Lipschitz domain in R^{n+1}_+ . A measurable function $a: \mathcal{L} \longrightarrow R$ is a T^p_{Ω} -atom if there exists a ball $Q \subset \partial \mathcal{L}$ such that $supp a \subset \widehat{Q}_{\Omega}$, and $||a||_{\infty} \leq |Q|^{-\frac{1}{p}}$. We restrict ourselves to the case n=1, but a similar proof also works in any other dimension.

THEOREM 1. If $\Omega = \{\Omega_{\tilde{x}}\}_{\tilde{x} \in \partial \mathcal{L}}$ is a symmetric family of sets, such that $\Omega_{\tilde{x}}(t)$ is an open for all $(\tilde{x},t) \in \mathcal{L} \subset R_+^2$, then, for $0 , <math>f \in T_{\Omega}^p$ if and only if

$$(3.2) f \equiv \sum_{j} \lambda_{j} a_{j},$$

where a_j is a T_{Ω}^p -atom and $\sum_j |\lambda_j|^p < \infty$.

Moreover, $||f||_{T^p_{\Omega}} \approx \inf\{(\sum_j |\lambda_j|^p)^{\frac{1}{p}}\}$, where the infimum is taken over all sequences satisfying (3.2).

Proof. We first show that $|| ||_{T^p_{\Omega}}$ is always a p-norm, for $0 and hence if <math>f \equiv \sum_j \lambda_j a_j$, then $||f||_{T^p_{\Omega}}^p \le \sum_j |\lambda_j|^p ||a_j||_{T^p_{\Omega}}^p$. But by the previous Lemma:

$$||a_{j}||_{T_{\Omega}^{p}}^{p} = \int_{\partial \mathcal{L}} (A_{\Omega}^{\infty}(a_{j})(\tilde{x}))^{p} ds$$

$$\leq \int_{\partial \mathcal{L}} ||a_{j}||_{\infty}^{p} (A_{\Omega}^{\infty}(\chi_{\widehat{Q_{j,\Omega}}})(\tilde{x}))^{p} ds$$

$$\leq ||a_{j}||_{\infty}^{p} \int_{\partial \mathcal{L}} \chi_{Q_{j}}(\tilde{x}) ds \leq 1$$

hence, $||f||_{T_{\Omega}^p}^p \leq \sum_j |\lambda_j|^p$. For the converse we need the following observation: If $f \in T_{\Omega}^p$ and $\lambda > 0$ then $\{\tilde{x} : A_{\Omega}^{\infty}(f)(x) > \lambda\}$ is an open set. In fact, if $A_{\Omega}^{\infty}(f)(\tilde{x}) > \lambda$, then there exists a point $(z,t) \in \Omega_{\tilde{x}}$ so that $|f(z,t)| > \lambda$. By hypothesis, $\tilde{x} \in \Omega_{\tilde{z}}(t)$ and there exists $\epsilon > 0$ such that if $\tilde{y} \in B(\tilde{x},\epsilon)$ then $\tilde{y} \in \Omega_{\tilde{z}}(t)$. Again,by symmetry, $(z,t) \in \Omega_{\tilde{y}}$ and so $A_{\Omega}^{\infty}(f) > \lambda$ if $\tilde{y} \in B(\tilde{x},\epsilon)$. Set now $M_k = \{\tilde{x} \in \partial \mathcal{L} : A_{\Omega}^{\infty}(f) > 2^k\}$ and write $M_k = \bigcup_{j \in Z} B_j^k$ by Whitney decomposition([3],[5]). Since $f \in T_{\Omega}^p$, B_j^k is bounded for all $j,k \in Z$. Set $a_{j,k} \equiv \lambda_{j,k}^{-1} f(\chi_{\widehat{B_{j,\Omega}^k}} - \sum_{B_l^{k+1} \subset B_j^k} \chi_{\widehat{B_{j,\Omega}^{k+1}}})$, where $\lambda_{j,k} = 2^{k+1} s(B_j^k)^{\frac{1}{p}}$.

It is clear that $supp \ a_{j,k} \subset \widehat{B_{j,\Omega}^k}$ and

$$\sum_{j,k} |\lambda_{j,k}|^p = \sum_k 2^{p(k+1)} s(M_k)$$

$$\leq C||f||_{T_{\Omega}^p}^p < \infty$$

and so it remains to show that $f \equiv \sum_{j,k} \lambda_{j,k} a_{j,k}$ and $||a_{j,k}||_{\infty} \le s(B_j^k)^{-\frac{1}{p}}$. Let $(x,t) \in \widehat{B_{j,\Omega}^k}$ and suppose $|f(x,t)| > 2^{k+1}$. If $\tilde{y} \in \Omega_{\tilde{x}}(t)$, then $(x,t) \in \Omega_{\tilde{y}}$ and hence $\tilde{y} \in M_{k+1}$. Therefore $\Omega_{\tilde{x}}(t) \subset M_{k+1}$ and there exists a unique $l \in Z$ so that $\Omega_{\tilde{x}}(t) \subset B_l^{k+1}$. Since $\Omega_{\tilde{x}}(t) \subset B_j^k$ then $B_l^{k+1} \subset B_j^k$. Thus,

$$\chi_{\widehat{B^k_{j,\Omega}}}(x,t) - \sum_{B^{k+1}_r \subset B^k_i} \chi_{\widehat{B^{k+1}_{r,\Omega}}}(x,t) = 0.$$

Therefore, for all $(x,t) \in \widehat{B_{j,\Omega}^k}$, $|a_{j,k}(x,t)| \leq 2^{-(k+1)} s(B_j^k)^{-\frac{1}{p}} 2^{k+1} = s(B_j^k)^{-\frac{1}{p}}$.

Finally, if $(x,t) \in \mathcal{L}$ and $2^l < |f(x,t)| < 2^{l+1}$ then $\Omega_{\tilde{x}}(t) \subset M_l$. Let $K \in Z$ be the greast integer satisfying $\Omega_{\tilde{x}}(t) \subset M_k$ (since $A_{\Omega}^{\infty}(f)(\tilde{x}) < \infty$ $a, e \quad \tilde{x} \in \partial \mathcal{L}$). Let $s \in Z$ so that $\Omega_{\tilde{x}}(t) \subset B_s^K$. We want to show that if

$$g_{j,k}(x,t) = \chi_{\widehat{B_{j,\Omega}^k}}(x,t) - \sum_{B_r^{k+1} \subset B_i^k} \chi_{\widehat{B_{r,\Omega}^{k+1}}}(x,t)$$

then $\sum_{j,k} g_{j,k}(x,t) = 1$. If $\Omega_{\tilde{x}}(t) \subset B_j^k$, then $k \leq K$. Suppose that k < K and $(x,t) \in \widehat{B_{j,\Omega}^k}$, then $B_s^K \subset B_r^{k+1} \subset B_j^k$ for some $r \in Z$

and hence $g_{j,k}(x,t)=0$. If $(x,t)\in \widehat{B_{j,\Omega}^K}$ then clearly j=s and $g_{j,K}(x,t)=1$.

THEOREM 2. Suppose Ω is a symmetric family and $\{\tilde{x} \in \partial \mathcal{L} : \Omega_{\tilde{x}} \cap K \neq \emptyset\}$ is finite measure. where K is compact set in $\mathcal{L} \subset R^2_+$. For $0 , the dual space of <math>T^p_\Omega$ is the space of $V^{\frac{1}{p}}_\Omega$ -Carleson measure. more presisely, the pairing

$$(f, d\mu) \longrightarrow \int_{\mathcal{L}} f(x, t) d\mu(x, t)$$

with f ranging over functions which are in T_{Ω}^{p} and are continuous in \mathcal{L} and $d\mu$ over Carleson measures, relizes the duality of T_{Ω}^{p} with Carleson measures $V_{\Omega}^{\frac{1}{p}}$. That is, $(T_{\Omega}^{p})^{*} = V_{\Omega}^{\frac{1}{p}}$

Proof. Let $f \in T^p_{\Omega}$ and $\mu \in V^{\frac{1}{p}}_{\Omega}$, and write $f \equiv \sum_j \lambda_j a_j$ as Theorem 1. Then,

$$\left| \int_{\mathcal{L}} f(x,t) d\mu(x,t) \right| \leq \sum_{j} |\lambda_{j}| \int_{\widehat{B_{j,\Omega}}} |a(x,t)| d\mu(x,t)$$

$$\leq \sum_{j} |\lambda_{j}| ||a_{j}||_{\infty} |\mu| (\widehat{B_{j,\Omega}})$$

$$\leq \sum_{j} |\lambda_{j}| s(B_{j})^{-\frac{1}{p}} ||\mu||_{V_{\Omega}^{\frac{1}{p}}} s(B_{j})^{\frac{1}{p}}$$

$$\leq (\sum_{j} |\lambda_{j}|^{p})^{\frac{1}{p}} ||\mu||_{V_{\Omega}^{\frac{1}{p}}}.$$

Conversely, a bounded functional on $T_{\Omega}^{p}(\mathcal{L})$ gives bounded linear functional on $\mathcal{C}(K)$ which is the space of continuous function on compact set K, K ranges over the compact subset of \mathcal{L} . This induces a measure $d\mu$ on \mathcal{L} . To show $d\mu$ is a Carleson measure. Write $d\mu = \eta d|\mu|$ and put $f(x,t) = \overline{\eta}\chi_{(\widehat{Q})}$. Let $\{f_n\}$ be a sequence of continuous functions with compact support which converges to $f = \overline{\eta}\chi_{\widehat{Q}}$ in the sence of $T_{\Omega}^{p}(\mathcal{L})$ -norm convergence. Since $A_{\Omega}^{\infty}(f) = \chi_{Q}$, by the continuity of the liner functional we get

$$\int_{\widehat{Q_{\Omega}}} d|\mu| \le |\int_{\widehat{Q_{\Omega}}} \overline{\eta} d\mu| = |\int_{\widehat{Q_{\Omega}}} f d\mu|$$

$$\le ||A_{\Omega}^{\infty}(f)||_{L^{p}(\partial \mathcal{L}, ds)}^{\frac{1}{p}} = Cs(Q)^{\frac{1}{p}}.$$

References

- [1] María J. Carro and Javier Soria, Tent spaces over general approach regions and pointwise estimates, Pacific. J. Math 163 (1994), 217-235.
- [2] R.R. Coifman, Y. Meyer and E. M. Stein, Some new function spaces and there applications to harmonic analysis, J. Func. Anal. 62 (1985), 304-355.
- [3] José Garcia and José L, Rubido de Francia, Weighted norm inequalities and related topics, North-Holland-Amsterdam, New York, Oxford, 1985.
- [4] C.E. Keing, Weighted H^p spaces in Lipschitz domains, Amer. J. Math 102 (1980), 129-163.
- [5] E. M. Stein, Singular integrals and Differentiability Properties of Functions, Priceton Univ. Press, Princeton, New Jersey, 1970.

Department of Mathematics Kyungpook National University Taegu, 702-701, Korea