The Kinetic Parameters of Hafnia alvei Aspartase from pH Studies

  • Kim, Sung-Kun (Department of Chemistry, College of Natural Sciences, Hanyang University) ;
  • Choi, Jung-Hoon (Department of Chemistry, College of Natural Sciences, Hanyang University) ;
  • Yoon, Moon-Young (Department of Chemistry, College of Natural Sciences, Hanyang University)
  • Received : 1994.09.03
  • Published : 1995.05.31

Abstract

The pH dependence of kinetic parameters in the amination direction of the aspartase from Hafnia alvei has been determined. The V/K for fumarate is bell shaped with pK values of 6.4 and 8.7. The maximum velocity for fumarate is also bell shaped with pK values of 7.2 and 9.1. The pH dependence of 1/K, for potassium (competitive inhibitor of ammonia) decreases at low pH with pK 7.6. Together with data [Yoon and Cook (1994) Korean J. Biochem. 27, 1-5] on the deamination direction of the aspartase, these results are consistent with two enzyme groups which are necessary for catalysis. An enzymatic group that must be deprotonated has been identified. Another enzyme group must be protonated for substrate binding. Both the general base and general acid group are in a protonation state opposite that in which they started when aspartate was bound. A proton is abstracted from C-3 of the monoanionic form of L-aspartate by an enzyme general base with, a pK of 6.3~6.6 in the absence and presence of $Mg^{2+}$ Ammonia is then expelled with the assistance of a general acid group giving $NH_{4+}$ as the product.

Keywords

References

  1. Biochemistry v.7 Bada, J.L. https://doi.org/10.1021/bi00850a014
  2. Biochemistry v.19 Blanchard, J.S.;Cleland, W.W. https://doi.org/10.1021/bi00560a019
  3. Methods Enzymol. v.63 Cleland, W.W.
  4. Data for Biochemical Research Dawson, R.M.C.;Elliot, D.C.;Elliot, W.H.;Johnes, K.M.
  5. Biochemistry v.11 Dougherty, T.B.;Willams, V.R.;Younathan, E.S. https://doi.org/10.1021/bi00763a017
  6. J. Biol. Chem. v.233 Englard, S.
  7. Biochemisty v.27 Falzone, C.F.;Karsten, W.E.;Conley, J.D.;Viola, R.E. https://doi.org/10.1021/bi00426a004
  8. J. Am. Chem. Soc. v.81 Gawron, O.;Fondy, T.P. https://doi.org/10.1021/ja01532a059
  9. J. Biochem. v.98 Ida, N.;Tokushige, M. https://doi.org/10.1093/oxfordjournals.jbchem.a135269
  10. Anal. Biochem. v.147 Karsten, W.E.;Hunsley, J.R.;Viola, R.E. https://doi.org/10.1016/0003-2697(85)90280-5
  11. Biochemistry v.25 Karsten, W.E.;Gates, R.B.;Viola, R.E. https://doi.org/10.1021/bi00354a016
  12. J. Biol. Chem. v.233 Krasna, A.I.
  13. Biochemistry v.23 Nuiry, I.I.;Hermes, J.D.;Weiss, P.M.;Chen, C.Y.;Cook, P.F. https://doi.org/10.1021/bi00317a013
  14. J. Biol.Chem. v.255 Porter, D.J.T.;Bright, H.J.
  15. Arch. Biochem. Biophys. v.147 Rudorph, F.B.;Fromm, H.J. https://doi.org/10.1016/0003-9861(71)90313-4
  16. Biochem. Biophys. Acta. v.312 Suzuki, D.;Yamajuchi, J.;Tokushige, M.
  17. J. Bacteriol. v.173 Sun, D.;Setlow, P. https://doi.org/10.1128/jb.173.12.3831-3845.1991
  18. Arch. Biochem. Biophys. v.93 Wilkinson, J.S.;William, V.R. https://doi.org/10.1016/0003-9861(61)90318-6
  19. J. Biol.Chem. v.242 Wolloams, V.R.;Lartigue, D.J.
  20. Biochem. Biophys. Res. Commun. v.31 Williams, V.R.;Scott, R.M. https://doi.org/10.1016/0006-291X(68)90495-6
  21. The Korean J. Biochem. v.27 Yoon, M.Y.;Cook, P.F.