Glycation of Copper, Zinc-Superoxide Dismutase and its Effect on the Thiol-Metal Catalyzed Oxidation Mediated DNA Damage

  • Park, Jeen-Woo (Department of Biochemistry, College of Natural Sciences, Kyungpook National University) ;
  • Lee, Soo-Min (Department of Biochemistry, College of Natural Sciences, Kyungpook National University)
  • Received : 1994.12.13
  • Published : 1995.05.31

Abstract

The nonenzymatic glycation of copper, zinc-superoxide dismutase (Cu,Zn-SOD) led to inactivation and fragmentation of the enzyme. The glycated Cu,zn-SOD was isolated by boronate affinity chromatography. The formation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) in calf thymus DNA and the generation of strand breaks in pBhiescript plasmid DNA by a metal-catalyzed oxidation (MCO) system composed of $Fe^{3+}$, $O_2$, and glutathione (GSH) as an electron donor was enhanced more effectively by the glycated CU,Zn-SOD than by the nonglycated enzyme. The capacity of glycated Cu,Zn-SOD to enhance damage to DNA was inhibited by diethylenetriaminepentaacetic acid (DETAPAC), azide, mannitol, and catalase. These results indicated that incubation of glycated CU,Zn-SOD with GSH-MCO may result in a release of $Cu^{2+}$ from the enzyme. The released $Cu^{2+}$ then likely participated in a Fenton-type reaction to produce hydroxyl radicals, which may cause the enhancement of DNA damage.

Keywords

References

  1. Biochm. Biophys. Acta v.924 Arai, K.;iizuka, S.;Tata, Y.;Oikawa, K.;Taniguchi, N. https://doi.org/10.1016/0304-4165(87)90025-0
  2. Fress Radical Res. Commun. v.4 Azeredo, M.;Falcao, J.;Raposo, J.;Manso, C. https://doi.org/10.3109/10715768809066899
  3. Anal. Biochem. v.44 Beuchamp, C.;Fridovich, I. https://doi.org/10.1016/0003-2697(71)90370-8
  4. Arch. Biochem. Biophys. v.240 Blum, J.;Fridovich, I. https://doi.org/10.1016/0003-9861(85)90056-6
  5. Free Radical Biol. Med. v.5 Chevion, M. https://doi.org/10.1016/0891-5849(88)90059-7
  6. Ann. NY Acad. Sci. v.121 Davis, B.J.
  7. Free Radical Res. Commun. v.1 Floyd, R.A.;Watson, J.J.;Wong, P.K.;Altmiller, D.H.;Rickard, R.C. https://doi.org/10.3109/10715768609083148
  8. Biochemistry v.14 Hodgson, E.K.;Fridovich, I. https://doi.org/10.1021/bi00695a010
  9. Eur. J. Biochem. v.180 Jewett, S.L.;Cushing, S.;Gillespie, F.;Smith, D.;Sparks, S. https://doi.org/10.1111/j.1432-1033.1989.tb14683.x
  10. Nucleic Acid Res. v.12 Kasai, H.;Nishimura, S. https://doi.org/10.1093/nar/12.4.2137
  11. Carbohydr. Res. v.70 Kashimura, N.;Morita, J.;Komono, T. https://doi.org/10.1016/S0008-6215(00)83286-3
  12. J. Biol. Chem. v.257 Kono, Y.;Fridovich, I.
  13. Biochem. Biophys. Res. Commun. v.192 Kwon, S.J.;Kim. K.;Kim, I.H.;Yoon, I.K.;Park, J.W. https://doi.org/10.1006/bbrc.1993.1481
  14. Nature v.27 Laemmli, U.K.
  15. J. Biol. Chem. v.267 Ookawara, T.;Kawamura, N.;Kitagawa, Y.;Taniguchi, N.
  16. Arch. Biochem. Biophys. v.312 Park, J.W.;Floyd, R.A. https://doi.org/10.1006/abbi.1994.1311
  17. Nature v.349 Shibutani, S.;Takeshita, M.;Grollman, A.P. https://doi.org/10.1038/349431a0
  18. Trends Biochem. Sci. v.11 Stadtman, E.R.
  19. Biochem. Biophys. Res. Commun. v.107 Tien, M.;Bucher, J.R.;Aust, S.D. https://doi.org/10.1016/0006-291X(82)91701-6
  20. BR. J. Cancer v.55 Wallace, S.S.
  21. Biochem. J. v.248 Wolff, S.P.;Dean, R.T. https://doi.org/10.1042/bj2480243
  22. Proc. Natl. Acad. Sci. USA v.87 Yim, M.B.;Chock, P.B.;Stadtman, E.R. https://doi.org/10.1073/pnas.87.13.5006