Purification and Characterization of Two Extracellular Glucoamylase Isozymes from Lipomyces kononenkoae CBS 5608 Mutant

  • Chun, Soon-Bai (Department of Microbiology, Chonnam National University) ;
  • Bai, Suk (Department of Microbiology, Chonnam National University) ;
  • Im, Suhn-Young (Department of Microbiology, Chonnam National University) ;
  • Choi, Won-Ki (Department od Chemistry, Chonnam National University) ;
  • Lee, Jin-Jong (Department of Microbiology, Chonnam National University)
  • Received : 1995.03.02
  • Published : 1995.09.30

Abstract

Two forms of glucoamylase (GI and GII) from starch-grown Lipomyces kononenkoae CBS 5608 mutant were purified to apparent homogeneity by means of ultrafiltration, Sephacryl S-200 gel filtration and DEAE Sephadex A-50 chromatography. The apparent molecular weight was calculated as ca. 150 kDa for GI and ca. 128 kDa for GII, respectively. Both enzymes were glycoproteins with isoelectric points of 5.6 (GI) and 5.4 (GII). They had a pH optimun of 4.5 and were stable from pH 5 to 8. The temperature optimum for both enzymes was $60^{\circ}C$, but they were rapidly inactivated above $70^{\circ}C$. The $K_m$ values toward starch were estimated to be 6.57 mg per ml for GI and 4.52 mg per ml for GII, and the $V_{max}$ values were 16.28 ${\mu}M$ per mg for GI and 32.25 ${\mu}M$ per mg for GII, respectively. The $K_m$ and $V_{max}$ values of GII for ${\alpha}-$ or ${\beta}-cyclodextrin$ were estimated to be 0.15 mg per ml and 2.0 mg per ml, respectively ($K_m$) and 1.02 ${\mu}M$ per mg or 1.02 ${\mu}M$ per mg, respectively ($V_{max}$). Neither enzyme exhibited pullulanase activity but they released only glucose from starch or cyclodextrin. Amino acid analysis indicated that both glucoamylases were enriched in proline and acid amino acids. Glucoamylase GII strongly cross-reacted with a monoclonal antibody raised against GI enzymes, and the two enzymes shared very similar amino acid composition. Western blot analysis indicated that L. kononenkoae CBS 5608 mutant produced two forms of glucoamylase on starch, and that synthesis of them was subject to glucose repression.

Keywords

References

  1. EMBO. J. v.3 Boel, E.;Hansen, M.T.;Hjort, I.;Hoegh, I.;Filld, N.P.
  2. Kor. J. Appl. Microbiol. Bioeng. v.18 Cho, N.C.;Kim, K.H.;Chun, S.B.;Chung, K.C.
  3. Appl. Environ. Microbiol. v.50 DeMot, R.;Verachtert, H.
  4. Eur. J. Biochem. v.164 DeMot, R.;Verachtert, H. https://doi.org/10.1111/j.1432-1033.1987.tb11175.x
  5. Prep. Biochem. v.18 Deibel, M.R. Jr.;Hiebsch, R.;Klein, R.D.
  6. J. Bacteriol. v.172 Dowhanick, T.M.;Russel, I.;Scherer, S.W.;Stewart, G.G.;Seligy, V.L. https://doi.org/10.1128/jb.172.5.2360-2366.1990
  7. Anal. Chem. v.28 Dubois, M.;Hamilton, K.A.;Rebers, P.A.;Smith, F. https://doi.org/10.1021/ac60111a017
  8. J. Gen. Microbiol. v.136 Fagerstrom R.A.;Vainio, A.;Suoranta, K.;Pakula, T.;Kalkkinen, N.;Torkkeli, H. https://doi.org/10.1099/00221287-136-5-913
  9. Amylase, amyloglucosidase and related glucanases;Economic Microbiology, Vol.5 Microbial enzymes and bioconversion Forgaty, W.M.;Kelly, C.T.;Rose, A.H.(ed.)
  10. FEMS Microbil. Lett. v.66 Gosh, A.;Chatterjee, B.S.;Das, A. https://doi.org/10.1111/j.1574-6968.1990.tb04024.x
  11. J. Appl. Bacteriol. v.71 Gosh, A.;Chatterjee, B.S.;Das, A. https://doi.org/10.1111/j.1365-2672.1991.tb02973.x
  12. Agric. Biol. Chem. v.42 Hayashida, S.;Yoshino, E.
  13. Can J. Microbiol. v.34 Jensen, B.;Olsen, J.;Aherman, K.
  14. Kor. J. Microbiol. v.30 Kim, S.M.;Bai, S.;Chung, H.Y.;Park, J.C.;Lee, J.J.;Kim, D.H.;Song, M.H.;Chun, S.B.
  15. Can J. Microbiol. v.133 Kubicek, S.P.;Panda, T.;Schreferi-Kumar, G.;Gruber, F.;Messner, R.
  16. Nature v.227 Laemli, U.K. https://doi.org/10.1038/227680a0
  17. Korean Biochem. J. v.22 Lee, Y.K.;Im, S.Y.;Kim, Y.H.;Yoon, M.S.;Hahm, K.S.;Han, M.H.
  18. Cereal. Chem. v.49 Lineback, D.R.;Aria, L.A.
  19. Cereal. Chem. v.49 Lidneback, D.R.;Georgi, C.E.;Doty, R.L.
  20. J. Biol. Chem. v.193 Lowry, O.H.;Rosebrough, N.J.;Randall, A.J.
  21. Arch. Biochem. Biophsys. v.248 Modena, D.;Vanoni, M.;England, S.;Marmur, J. https://doi.org/10.1016/0003-9861(86)90410-8
  22. Can J. Microbiol. v.39 Orsini, L.R.;Terenzi, H.;Jorce, J.A. https://doi.org/10.1139/m93-126
  23. Carbohydr. Res. v.2 Pazur, J.H.;Knalla, H.R.;Lepure, A.
  24. Starch/Staerke v.41 Saha, B.C.;Zeikus, J.G. https://doi.org/10.1002/star.19890410206
  25. Eur. J. Appl. Microbiol. v.4 Spencer-Martin, I.;van Uden, N. https://doi.org/10.1007/BF01390667
  26. Eur. J. Appl. Microbiol. Biotechnol. v.6 Spencer-Martin, I.;van Uden, N.
  27. Int. J. Microbiol. v.2 Spencer-Martin, I.
  28. Carsberg. Res. Commun. v.47 Svensson, R.;Perderson, T.G.;Svendsen, I.;Sakai, T.;Ottesen, M. https://doi.org/10.1007/BF02907797
  29. Appl. Environ. Microbiol. v.44 Wilson, J.J.;Ingledew, W.M.
  30. J. Gen. Appl. Microbiol. v.31 Yamashita, I.;Nakamura, M.;Fukui, S.