Light Effects on the Membrane Potential in Oat Cells

  • Kim, Kwan-Bae (Department of Biochemistry, Chungbuk National University) ;
  • Park, Moon-Hwan (Department of Biochemistry, Chungbuk National University) ;
  • Chae, Quae (Department of Biochemistry, Chungbuk National University)
  • Received : 1995.04.12
  • Published : 1995.09.30

Abstract

One of the reaction pathways in light-invoked signal transduction can be initiated through ion fluxes across the plasma membrane in higher plants. We isolated protoplasts from oat coleoptile and examined the effects of light on the membrane potential using a membrane potential-sensitive fluorescent probe (bisoxonol). Both red and far-red light initially induced a hyperpolarization in oat cells. Red light-induced hyperpolarization was effectively dissipated by 100 mM $K^+$, but the hyperpolarization induced by far-red light was not depolarized by any of the cations ($K^+$, $Ca^{2+}$, $Li^+$, $Na^+$) tested. The depolarization induced by red light and $K^+$ was inhibited by 200 mM TEA, which is a $K^+$ channel blocker. These results suggest that $K^+$ influx through the inward $K^+$ channel may be a depolarization path in the phytochrome-mediated signal transduction.

Keywords

References

  1. Molecular Biology of The Cell Alberts, B.;Bray, D.;Lewis, J.;Raff, M.;Roberts, K.;Watson, J.D.
  2. Proc. Natl. Acad. Sci. USA v.84 Armstrong, D.;Eckert, R. https://doi.org/10.1073/pnas.84.8.2518
  3. Biochim. Biophys. Acta v.1070 Bronner, C.;Landry, Y. https://doi.org/10.1016/0005-2736(91)90073-H
  4. FEBS Lett. v.255 Bronner, C.;Mousli, M.;Eleno, N.;Landry, Y. https://doi.org/10.1016/0014-5793(89)81132-9
  5. The Plant Cell v.5 Chasan, R. https://doi.org/10.1105/tpc.5.2.137
  6. Biochim. Biophys. Acta v.1051 Chae, Q.;Park, H.J.;Hong, S.D. https://doi.org/10.1016/0167-4889(90)90182-D
  7. Plant Physiol. v.101 Fallon, K.M.;Shacklock, P.S.;Trewavas, A.J. https://doi.org/10.1104/pp.101.3.1039
  8. Phytochrome and Photoregulation in Plants Furuya, M.
  9. Photomorphogenesis in Plants Kendrick, R.E.;Kronenberg, G.H.M.
  10. Plant Physiol. v.99 Kim, H.Y.;Cote, G.G.;Crain, R.C. https://doi.org/10.1104/pp.99.4.1532
  11. Plant Physiol. v.92 Lew, R.R.;Serlin, B.S.;Schauf, C.L.;Stockton, M.E. https://doi.org/10.1104/pp.92.3.822
  12. Biochim. Biophys. Acta v.595 Rink, T.J.;Montecucco, C.;Hesketh, T.R.;Tsien, R.Y. https://doi.org/10.1016/0005-2736(80)90243-6
  13. Proc. Natl. Acad. Sci. USA v.84 Schroeder, J.I.;Raschke, K.;Neher, E. https://doi.org/10.1073/pnas.84.12.4108
  14. Proc. Natl. Acad. Sci. USA v.85 Serrano, E.E.;Zeiger, E.;Hagiwara, S. https://doi.org/10.1073/pnas.85.2.436
  15. Nature v.358 Shacklock, P.S.;Read, N.D.;Trewavas, A.J. https://doi.org/10.1038/358753a0
  16. Plant Physiol. v.92 Short, T.W.;Briggs, W.R. https://doi.org/10.1104/pp.92.1.179
  17. Biochemical Phamacology v.47 Suh, B.C.;Kim, K.T. https://doi.org/10.1016/0006-2952(94)90399-9
  18. Biochim. Biophys. Acta v.1026 Taglialatela, M.;Canzoniero, L.M.T.;Fatatis, A.;Renzo, G.D.;Yasumoto, T.;Annuniziato, L. https://doi.org/10.1016/0005-2736(90)90342-L
  19. Photochem. Photobiol. v.54 Trytyn, A.;Kendrick, R.E.;Wagner, G. https://doi.org/10.1111/j.1751-1097.1991.tb02136.x
  20. Annu. Rev. Biophys. Bioeng. v.8 Waggoner, A.S. https://doi.org/10.1146/annurev.bb.08.060179.000403