Studies on Ganglioside GM3 and Sialidase Activity in Human Fetal Liver

  • Lee, Young-Sun (Department of Chemistry, College of Natural Sciences, Ewha Womans University) ;
  • Jhon, Gil-Ja (Department of Chemistry, College of Natural Sciences, Ewha Womans University)
  • Received : 1995.03.06
  • Published : 1995.09.30

Abstract

Ganglioside GM3 and sialidase activities in human fetal liver have been investigated. Gangliosides were extracted from fetal livers by the Folch-Suzuki method and analyzed by high-performance thin layer chromatography (HPTLC). GM3 increased, but lactosylceramide (LacCer) decreased predominantly over the developmental stages. Sialidase in human fetal liver was mainly localized in the lysosomal fraction and its activity was high in the earlier stages of development. The optimum pH for this enzyme was 4.3~4.4. Sialidase was more active with the ganglioside mixture than with GM3, sialyllactose or fetuin. Fetal liver sialidase was still active (20% activity) in the presence of 25% methanol. These results suggested that the changes of the ganglioside GM3 and sialidase activity may be involved in the regulation of cell growth in human fetal liver during development.

Keywords

References

  1. Biochem. J. v.82 Aminoff, D.
  2. J. Biol. Chem. v.252 Ando, S.;Yu, R.K.
  3. J. Biol. Chem. v.261 Bremmer, E.G.;Schlessinger, J.;Hakomori, S.
  4. J. Biol. Chem. v.226 Folch-Pi, J.;Lees, M.;Sloane-Stanley, G.H.
  5. Annu. Rev. Biochem. v.50 Hakomori, S. https://doi.org/10.1146/annurev.bi.50.070181.003505
  6. Agric. Biol. Chem. v.55 Inoute, K.;Shigeta, K.
  7. Methods Enzymol. v.83 Ledeen, R.W.;Yu, R.K.
  8. J. Biol. Chem. v.193 Lowry, O.H.;Rosebrough, N.J.;Farr, A.L.;Randall, R.J.
  9. Exp. Cell Res. v.117 Machwe, B.A.;Lockney, M.;Moskal, J.R.;Fung, Y.K.;Sweeley, C.C. https://doi.org/10.1016/0014-4827(78)90431-7
  10. Biochem. Biophys. Res. Commun. v.175 Melkerson-Watson, L.J.;Sweeley, C.C. https://doi.org/10.1016/S0006-291X(05)81238-0
  11. Hoppe-Seyler's Z. Physiol. Chem. v.363 Michalski, J.C.;Corfield, A.P.;Schauer, R. https://doi.org/10.1515/bchm2.1982.363.2.1097
  12. Eur. J. Biochem. v.203 Riboni, L.;Acquotti, D.;Casellato, R. https://doi.org/10.1111/j.1432-1033.1992.tb19834.x
  13. Exp. Cell Res. v.190 Rosner, H.;Greis, C.;Rodemann, H.P. https://doi.org/10.1016/0014-4827(90)90180-I
  14. J. Lipid Res. v.19 Seyfried, T.N.;Ando, S.;Yu, R.K.
  15. J. Biol. Chem. v.267 Sjoberg, E.R.;Manzi, A.M.;Khoo, K.H.;Dell, A.;Varki, A.
  16. Biochim. Biophys. Acta v.800 Spartro, J.;Alhadeff, J.A. https://doi.org/10.1016/0304-4165(84)90055-2
  17. J. Neurochem. v.12 Suzuki, K. https://doi.org/10.1111/j.1471-4159.1965.tb04256.x
  18. J. Neurochem. v.1 Svennerholm, L. https://doi.org/10.1111/j.1471-4159.1956.tb12053.x
  19. J. Biol. Chem. v.263 Usuki, S.;Lyu, S.C.;Sweeley, C.C.
  20. J. Biol. Chem. v.263 Usuki, S.;Lyu, S.C.;Sweeley, C.C.
  21. J. Biol. Chem. v.234 Warren, L.