Isolation and Characterization of Four Carboxypeptidases in Canavalia lineata Cotyledons

  • Yang, Jong-Moon (Department of Biology, College of Natural Sciences, Seoul National University) ;
  • Rhew, Tae-Hyong (Department of Biology, College of Natural Sciences, Pusan National University) ;
  • Koh, Suck-Chan (Department of Biology, College of Natural Sciences, Cheju National University) ;
  • Kwon, Young-Myung (Department of Biology, College of Natural Sciences, Seoul National University)
  • Received : 1995.05.19
  • Published : 1995.09.30

Abstract

Four carboxypeptidases, CP1, CP2, CP3, and CP4 were isolated from the cotyledons of germinating seedlings of Canavalia lineata by sequential chromatography on the following four columns: 1) CM-cellulose, 2) Sephacryl 5-300, 3) Procion red dye, and 4) Sephacryl S-200. A number of properties of the enzymes, such as substrate specificity, molecular weight, optimum pH, thermal stability, have been determined. Enzyme activities were measured using the Cbz(carbobenzoxy)-dipeptides containing phenylalanine at the penultimate position. The $K_m$ values of four carboxypeptidases for Cbz-Phe-Ala were 0.50, 0.65, 1.30, and 1.35 mM, respectively. The inhibition studies indicated that the four carboxypeptidases were all serine type. Each of the carboxypeptidases with molecular weights of 145, 114, 105, and 104 kDa, respectively, had the optimum enzyme activity at pH 5.0~6.0. And they were sensitive to high temperature.

Keywords

References

  1. Agric. Biol. Chem. v.41 Abe, M.;Arai, S.;Fujimaki, M.
  2. Annal. Biochem. v.72 Bradford, M.M. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Carlsberg Res. Commun. v.48 Breddam, K.;Srensen, S.B. https://doi.org/10.1007/BF02907768
  4. Carlsberg Res. Commun. v.50 Breddam, K.;Sorensen, S.B.;Ottesen, M. https://doi.org/10.1007/BF02907146
  5. Plant Physiol. v.55 Chrispeels, M.J.;Boulter, D. https://doi.org/10.1104/pp.55.6.1031
  6. Agric. Biol. Chem. v.44 Doi, E.;Komori, N.;Matoba, T.;Morita, Y.
  7. Plant Cell Physiol. v.21 Hara, I.;Matsubara, H. https://doi.org/10.1093/oxfordjournals.pcp.a075996
  8. J. Biol. Chem. v.250 Hayashi, R.;Bai, Y.;Hata, T.
  9. J. Biochem. v.247 Ihle, J.N.;Dure, L.S.
  10. Agric. Biol. Chem. v.46 Kawamura, Y.;Yonezawa, D.
  11. Korean Biochem. J. v.24 Koh, S.C.;Hwang, I.D.;Kwon, Y.M.
  12. Physiol. Plant. v.68 Mikkonen, A. https://doi.org/10.1111/j.1399-3054.1986.tb01927.x
  13. Planta v.104 Mikola, L.;Kolehmainen, L. https://doi.org/10.1007/BF00386993
  14. Planta v.149 Mikola, L.;Mikola, J. https://doi.org/10.1007/BF00380876
  15. Biochim. Biophys. Acta v.747 Mikola, L. https://doi.org/10.1016/0167-4838(83)90103-6
  16. Plant Physiol. v.81 Mikola, L. https://doi.org/10.1104/pp.81.3.823
  17. Plant Physiol. v.58 Preston, K.R.;Kruger, J.L. https://doi.org/10.1104/pp.58.4.516
  18. Plant Physiol. v.93 Ranki, H.;Sopanen, T.;Voutilainen, R. https://doi.org/10.1104/pp.93.4.1449
  19. Physiol. Plant. v.36 Salmia, M.A.;Mikola, J.J. https://doi.org/10.1111/j.1399-3054.1976.tb02262.x
  20. Phytochemistry v.26 Shutov, A.D.;Vaintraub, I.A. https://doi.org/10.1016/S0031-9422(00)82245-1
  21. Food Chem. v.7 Umetsu, H.;Abe, M.;Sugawara, Y.;Watanabe, T.;Ichishima, E. https://doi.org/10.1016/0308-8146(81)90058-3
  22. Plant Physiol. v.66 Van der Wilden, W.;Gilkes, N.R.;Chrispeels, M.J. https://doi.org/10.1104/pp.66.3.390
  23. Plant Physiol. v.75 Winsper, M.J.;Preston, K.R.;Rastogi, V.;Oaks, A. https://doi.org/10.1104/pp.75.2.480
  24. Mol. Cells v.3 Yoon, J.W.;Kwon, Y.M.